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GREEN'S FUNCTIONS COUPLED TO

SELF-DUAL MAXWELL FIELDS

MATTHEW L. GINSBERG1

Abstract. A twistor construction is given which gives an explicit form for the spin

n/2 propagators for massless fields coupled to a self-dual Maxwell field.

0. Introduction. Twistors were introduced by Penrose in 1967 [12,15] in an attempt

to provide a new description of complexified Minkowski space which naturally

emphasized the conformai invariance of various physical systems.

Twistor theory has had considerable success dealing with systems of this sort, and

we will be concerned with two of these specifically:

(1) The discovery by Ward [16,17] that various self-dual gauge fields can be

described in terms of vector bundles over projective twistor space P and

(2) The realization, originally due to Penrose [14,5] that solutions of the massless

field equations, minimally coupled to the self-dual fields of ( 1 ), can be described as

elements of certain cohomology groups on P.

There have been many explicit uses of these constructions; a general description

of self-dual Yang-Mills fields appears in [17] and has subsequently been used by

Atiyah, Hitchin, Drinfeld and Manin to solve these equations on SA [2], More

recently still, Atiyah [1] has managed to use the cohomology correspondence

described in the preceding paragraph to construct spin-0 Green's functions for

instanton-type Yang-Mills fields.

Our aim in this paper is to generalize these results for self-dual Maxwell fields by

giving an explicit construction of Green's functions of arbitrary spin coupled to the

field. Our construction will be explicit on twistor space only; spacetime fields can

easily be obtained from their twistor counterparts by contour integration [11,16].

The plan of the paper is as follows: §1 contains a brief review of the ideas of Ward

[16,17] and Penrose [14,5] which underlie the subsequent analysis. §2 extends some

ideas of Eastwood [3] which will be needed later but which have unfortunately not

appeared in the general literature thus far.

Green's functions are dealt with in §§3 and 4. Theorem 3.3 describes the

free-space Green's functions in terms of simplicial cohomology on the product of

twistor space and its dual. §4 consists of an extension of Theorem 3.3 to Green's

functions minimally coupled to self-dual electromagnetic fields. Concluding remarks

are contained in §5.
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This paper is an extension of earlier work in [7] and [4], and the results it contains

have been sketched by the author in an Oxford preprint [8]. The author would like to

thank Mike Eastwood and Roger Penrose for many illuminating discussions.

Our notation will follow [5]. Related material and an introduction to twistor

theory can be found in [11].

1. The Ward correspondence and the Penrose transform. Defining M (complexi-

fied compactified Minkowski space) to be the Grassmanian of 2-planes in twistor

space T, and F to be the flag manifold of Unes within 2-planes in T, we have the

usual twistor diagram [5]

p

P M

We will denote complexified Minkowski space byM'cM.

If T* is the dual of T and P* is its projective version, we get a similar diagram

F*

P* M

For a fixed region U C M, we will define

U" = pv'[(U)   and    "U = p*v*'1(U).

If, for example, U is the forward tube

M+ = [xa - iya E M7 such that x" andy" are real

and>,a is timelike and future pointing},

we have M+" = P+  and "M+ = P*~ (see [11], for example). Similarly for the

backward tube

M = ixa - iy" E M' such that xa andy" are real

and y" is timelike and past pointing},

we have M"" = P" and "M"= P*+ .

Now suppose that U, V C M. U will be called suitable if:

(1) U is Stein;

(2) H\U\ Z) = H2(U; Z) = 0; and

(3) for any twistor Z" E U", vp'\Za) n U is connected and

H\vp-\Za) n c/;Z) = 0,

and similarly for any dual twistor Wa E "U.

U and V will be called null disjoint if x E U and y G V imply that (x — y)2 ¥= 0,

i.e., x and y are not null-separated.

Note that M+ and M" are both suitable and are null disjoint.

The following result is essentially Ward's:

Theorem 1.1 (Ward). Let U C M be suitable, and suppose that E is a unitary

vector bundle over U with self-dual connection. Then E lifts to a holomorphic vector

bundle (which we will also denote by E) on U".    D
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Self-dual electromagnetic fields, for example, correspond to line bundles over

regions in P.

We will denote by £ the hyperplane section bundle over P. and will write

Q(k ) — $(£~k ) for the sheaf of germs of homogeneous functions on P. homogeneous

of degree k in their argument. If F is a vector bundle over a region in P, we will

abbreviate Û(V®£~k) to V(k). Similarly, if £* is the hyperplane section bundle

on P*, we write 6(k) = ©(£*-*), V(k) = 0(K®£*"*) on P*, and 6(j,k) =

0(|-j ® £*-*), V(j,k) = l?(K® T7 ® £*~A)onP X P*.

Following [13], we will write x^ for a point in complexified Minkowski space

M', where the A and A' are spinor indices. For a unitary vector bundle E over a

region U C M, we will write £V,i' for the associated covariant derivative. In the

electromagnetic case, we have [6]

oxA.

where \¡/A is a potential for the electromagnetic field. We define a massless field on

U, of helicity n/2 and minimally coupled to the bundle E, to be a spinor-valued

symmetric holomorphic function <p on U satisfying:

(1.1) *V¿V..r = 0    for«>0,

£D<p = 0    for« = 0,

eVjY    b = 0    for«<0,

where <i> has |«| spinor indices and t-D = eVa Ev£■ We will write £Z„ for the

group of all such massless fields. The basic result of [5] is the following:

Theorem 1.2 (Penrose). Let U CM be suitable, and suppose that E is a unitary

bundle over U with self-dual connection. If E is the lift of E to U" and E* its lift to "U,

then there are natural isomorphisms

H\U"\ £(-« - 2)) -£.Z„ * HX{"U; E*(n - 2)).    D

Theorems 1.1 and 1.2 are the natural starting point for this paper.

2. Nonprojective results. In this section we will discuss the relationship between

the cohomology groups appearing in Theorem 1.2 and various cohomology groups

on nonprojective twistor spaces. The results for the case where E is the trivial line

bundle were investigated by Eastwood in [3].

Let £ be a vector bundle over Í/CP, and let

77: T- (0} -P

be the usual projection. We will denote vr "'(£/) by Ü, and will similarly denote by É

the pullback of E to Ü. Abusing notation, we will also denote the sheaves of germs

of sections of £ or £ by £ or £, respectively.

Given a vector bundle £, it is possible to view the bundle £(-1) as a complex

manifold. (G(-l) — T, for example.) In the case where £ is a line bundle, this is

Ward's "deformed twistor space", and there is natural identification of holomorphic

functions on £(1) with sections of the bundle £.
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The homogeneity operator on P is given by

9T = Za

3Z°'

and since the transition functions for £ (and therefore £) are homogeneous of

degree 0 (£ being a holomorphic vector bundle over P), it follows that T — « is a

well-defined sheaf map from £ to itself. We therefore define sheaves £(«) via the

short exact sequence on T:

0 - £(«) - £ -*" É - 0.

Sections of £(«) are simply "homogeneous" sections of the bundle £.

Theorem 2.1 (Eastwood [3]). For U C P and E a vector bundle over U, there is an

exact sequence

0 - H\U; £(«)) - /Y'(i7; £(«)) - H°(U; £(«)) - H2(U; £(«))

-/Y2(£?; £(«)) -//'(¿/; £(«)) - ....

Proof. The basic idea of the proof is to Laurent expand an arbitrary section of £

along the fibers of it to evaluate the direct image sheaves ■n^E(n) and to then

calculate the cohomology groups Hk(Ü\ £(«)) using the Leray spectral sequence

[10, §11.4.17] and the generalized Gysin cohomology sequence [10, §1.4.6]. Details are

in [3].    D

3. Uncoupled Green's functions. Suppose that A is some differential operator with

no nontrivial global solutions. By a Green's function for A, we will mean a kernel

G(x, y) for the inverse operator to A.

Let U X V C M X M. It follows from Theorem 1.2 that a Green's function for

the (uncoupled) differential operators appearing in (1.1), of helicity n/2 in the first

variable and -n/2 in the second, will correspond to an element

<t>„ EH2(U" X"V-,e(-n-2,-n -2)).

Suppose we define, for n > 0,

(3-0 (»•*).«      £>""',
Ami(WaZa)

and, for U, V open subsets of a complex manifold X and S, ST sheaves over X, an

operation

•: HP(U; S) ® H"(V; °J ) - Hp + q+\UU V; $ ® °\ )

given by • = 3* U , where U is the usual cup product and 3* is the Mayer-Vietoris

coboundary [7,4]. It is then shown in [4] that the known spacetime properties of the

Green's functions imply that, for « > —1, <p„ = (W■ Z)n+X -<p for some fixed <p E

H\QUV; G) defined on a small neighborhood of ß^ = {WaZa = 0} n (U" X"V)

in P X P*. It is shown in [7] and [9] that if f is any line bundle on U" X"V with

Chern class (1,-1) such that the Chern class of the restriction of f to ß^ vanishes,

we can take <p to be the pullback of this restriction along the map e: 6 — 0* given by

e(f ) = e2"u.
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What we have done is considered the commutative diagram

tji'rj» x"V; ©)      -     H\U" X"K;0*)      -     H2(U" X"V; Z)     -    0

Í p I p l p

Hl{Qvy-,e)        -       Hl(Quv-,e*)        -        H2(QUV;Z)

and taken «f. = e^pc'A: for any /V £ kerp: //2(i/" X"F; Z) - //^ß^; Z).

Lemma 3.1 Let k generate the kernel of

p:H2(U" X"V;Z) - H2(ÜVV; Z),

and set <j> = e"1pc"1/c. The spin n/2 Green's functions are then given by, for n > — 1,

4, = (w-z)n+1-* e /y2(i/" x"F; 0(-« - 2,-« - 2)).

Proof. This is simply a matter of evaluating the associated spacetime field. If we

fix twistors/10 and Ba (and denote WaA" by WA, etc.), the transition functions for

the hyperplane section bundle on P* (which has Chern class -1) are given by

(WA)/(WB) on {WA ¥> 0} n {W- B # 0}. We can therefore take

1    ,    { WA B   Z
<t> = «r-r log

and

2m      \W-B a -Z

= _      1       (-!)"(«+!)! !    (j^illZ
" 2(27ri)2    (^-Z)" + 2       *\W-Ba-Z

To evaluate the field associated to this cohomology element, we use the usual

twistor contour integral formulae [14,11]. The details are in [9]; the result for « = 0,

for example, is

(3-2) G(x,y) = -L
1   I \2 '4ttz (x -y)

which is indeed the usual Green's function for the free space wave operator.    D

The Green's function in (3.2) is singular for x and y null separated, and it is

possible to see this directly in the twistor construction. If U and V are null disjoint,

iluv is a fiber bundle with base U" and fiber {Wa E "V such that WaZa = 0} for a

fixed Z" G U". For U and V null disjoint, the fiber is contractible and it follows

that H2(Qvy; Z) = H2(U"; Z) =s Z. In the more general case, H2(iluy; Z) = Z © Z.

Since //2((7" X"K; Z) = Z © Z for any U and K,

kerp://2(í7" X"K;Z) -* H2(Üuy;Z)

is nonvanishing if and only if the Green's function is well-behaved.

Lemma 3.2 Suppose //'(ß^iZ) = Z, and let k generate this group. Then <b in

Lemma 3.1 satisfies tr*<t> — ik. where i: Hx(üuv; Z) — Hl(Ùuv; 0) is the usual

injection and ir*<t> is the pullback of <j> to Ùuv.
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Proof. Consider the commutative diagram

H'{ÛVV;Z)     l     Hl(ùuv;e)      U     Hl{Ûuy;6*)

Hl(Quy>,6)      -     H\üuv; 0*)

where the top row is exact. Since the hyperplane section bundle is trivial when pulled

back to T, it follows that e it *cj> = e(££*~') = 0 on T, so that there is a/£ H\Ùuy;Z)

with i(j) = tt*4>.

Since <:(££*-') generates kerp: H2(U" X"V; Z) - H2(Üuy; Z), it follows that if k

generates H\ÙUV; Z), then tt*^ = ik.    D

As in the paragraph following the proof of Lemma 3.2, it is not hard to see that

H\ÙUV\ Z) = Z if U and V are null disjoint, and H\ÙUV; Z) = 0 otherwise.

Theorem 3.3. Let U, V C M be null disjoint. Then H](Ùuy; Z) » Z; let ¡(generate

this group. The spin n/2 Green's function on U X V then corresponds to the cohomol-

ogy element

(W-Z)n+x-kEH2(U" X"V;e(-n- 2,-n- 2))

for « 3* - 1.

Proof. Using Lemma 3.2, this is the same twistor function as (W■ Z),I+ , -<f>. Now

use Lemma 3.1.    D

4. Coupled Green's functions. In the coupled case, we will use Ward's deformed

twistor space and then prove an analog to Theorem 3.3.

Throughout this section, let £ be a line bundle over a region U" C P, and £ a line

bundle over "V C P*, where U and V are null disjoint. Suppose further that the

Chern classes of £ and £ are zero.

We now define complex manifolds 9"= £(-1) and 5T* = £(-1), together with

projections

■a: "J^ U"    and   it: T\* - "V,

and take ûuv to be the inverse image of Quv under these projections.

Lemma. 4.1. H\ùuv; Z) = Z.

Proof. Since UJ is a deformation of T and "T* is a deformation T*, wuv is a

deformation of Ùuy. H](ùuv\ Z) a¡ //'(ß^; Z) because the Chern classes of £ and

£ vanish, and we have already noted that H2(ÙUV; Z) — Z.    D

Theorem 4.2. Lei k generate H\üuv;Z). Then for « » -1, (W-Z)n+X k can be

thought of as an element of H2(U" X"V; E X F(-n - 2,-n - 2)). This is the spin

n/2 Green's function, minimally coupled to E in the first variable and to F in the

second.

Proof. Using the usual injection, we have k £ H\ù>uy; 0). We have already

remarked that this last group can be identified with H \uuy\ £ X £), so

(W-Z)n+]-ÜEH2(U" X"V; ÉX F(-n-2,-n -2)).
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For n 5» -1, £(-n — 2) has no global sections (since it has no global sections when

restricted to any line), and Theorem 2.2 gives us

H2{Ü" X"V; ÉX F(-n -2,-n- 2)) * H2(U" X"V; E X £(-« - 2,-n - 2)).

This completes the proof of the first part of the theorem. To see the second part, it

suffices to note that ( W- Z),T+ , • k varies holomorphically with the line bundles £

and F, and corresponds to the correct Green's function for £ and F trivial, by

Theorem 3.3    D

5. Concluding remarks. For Green's functions of negative helicity, there is diffi-

culty finding suitable analogs to the expressions (3.1) which continue to satisfy

d(W-Z)

3^„
'-^ = Za(WZ)n+x

etc.. for n < -1. It is possible to solve this problem using logarithms; the construc-

tion is rather messy and can be found in [9],

It is not clear whether or not the ideas we have presented can be extended to

couple Green's functions to vector bundles of higher rank. The difficulty arises

because there is no manifold "T£ such that holomorphic functions from ?T£ to CA

(where k is the rank of the bundle) can be identified with sections of £ (as in the first

paragraph of the proof of Theorem 4.2).
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