LOGICS WITH GIVEN CENTERS AND STATE SPACES

PAVEL PTÁK

ABSTRACT. Let B be a Boolean algebra and let K be a compact convex subset of a locally convex topological linear space. Then there exists a logic with the center Boolean isomorphic to B and with the state space affinely homeomorphic to K.

Introduction. In the quantum logic approach to the foundations of quantum mechanics, one identifies the event structure of a system with an orthomodular partially ordered set L (called usually a logic). The set of states is then represented by the set S(L) of all probability measures on L (see [4,7]). It can be shown that S(L) is a compact convex set and conversely, it was proved by F. W. Shultz [6] that any compact convex subset of a locally convex topological linear space is affinely homeomorphic to S(L) for a logic L.

The center C(L) of a logic L is the subset of L consisting of all "absolutely compatible" elements. It is known that the center of L is a Boolean algebra (see [1, 4]). Obviously, any Boolean algebra is the center of a logic.

Let us now consider the center and the state space simultaneously. The question is if for any Boolean algebra B and any compact convex subset of a LCTLS there exists a logic L such that C(L) = B and S(L) = K. We answer the question in the affirmative. In the construction we use, among other tools, the result of Shultz [6] and the technique of R. Greechie [2] for constructing orthomodular posets.

Notions. Results. Let us first review the basic definitions and state some auxiliary propositions.

DEFINITION 1. A logic is a set L endowed with a partial ordering \leq and a unary operation ' such that:

- (i) $0, 1 \in L$;
- (ii) $a \le b \Rightarrow b' \le a'$ for any $a, b \in L$;
- (iii) (a')' = a for any $a \in L$;
- (iv) $a \vee a' = 1$ for any $a \in L$;
- (v) $\bigvee_{i=1}^{n} a_{i}$ exists in L whenever $a_{i} \in L$, $a_{i} \le a'_{k}$ for $i \ne k$;
- (vi) $b = a \lor (b \land a')$ whenever $a, b \in L, a \le b$.

In the sequel, we shall reserve the symbol L for logics. One can prove easily that if $a, b \in L$, $a \le b'$ then $a \lor b$, $a \land b$ exists in L.

DEFINITION 2. Two elements $a, b \in L$ are called compatible if there are three elements $c, d, e \in L$ such that $c \le d', d \le e', e \le c'$ and $a = c \lor d, b = c \lor e$.

Received by the editors May 27, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 81B10, 06C15; Secondary 81C20.

DEFINITION 3. An element $a \in L$ is called central if a is compatible to any element of L. We denote by C(L) the set of all central elements of L and call C(L) the center of L.

PROPOSITION 1. The set C(L) with the operations $', \vee, \wedge$ inherited from L is a Boolean algebra.

PROOF. See [1, 4].

DEFINITION 4. Let $\{L_{\alpha} \mid \alpha \in I\}$ be a collection of logics. Denote by $\prod_{\alpha \in I} L_{\alpha}$ the ordinary Cartesian product of the sets L_{α} and endow the set $\prod_{\alpha \in I} L_{\alpha}$ with the relation \leq and the unary operation ' as follows. If $k = \{k_{\alpha} \mid \alpha \in I\} \in \prod_{\alpha \in I} L_{\alpha}$ and $h = \{h_{\alpha} \mid \alpha \in I\} \in \prod_{\alpha \in I} L_{\alpha}$, then $k \leq h$ (resp. k' = h) if and only if $k_{\alpha} \leq h_{\alpha}$ (resp. $k'_{\alpha} = h_{\alpha}$) for any $\alpha \in I$. The set $\prod_{\alpha \in I} L_{\alpha}$ with the above defined \leq , ' is called the product of the collection $\{L_{\alpha} \mid \alpha \in I\}$.

PROPOSITION 2. Let $\{L_{\alpha} \mid \alpha \in I\}$ be a collection of logics. Then $\prod_{\alpha \in I} L_{\alpha}$ is a logic. If $C(L_{\alpha}) = \{0,1\}$ for any $\alpha \in I$ then $C(\prod_{\alpha \in I} L_{\alpha})$ is Boolean isomorphic to the Boolean algebra of all subsets of I.

PROOF. See [3, 5].

DEFINITION 5. A state on a logic L is a mapping s: $L \rightarrow \langle 0, 1 \rangle$ such that:

- (i) s(1) = 1;
- (ii) if $a, b \in L$, $a \le b'$ then $s(a \lor b) = s(a) + s(b)$.

Let us denote by S(L) the set of all states on L. By a result of F. W. Shultz [6], any compact convex subset of a LCTLS equals, up to an affine homeomorphism, S(L) for a logic L (and vice versa, which is obvious).

DEFINITION 6. A logic L is called poor (resp. rigid) if $S(L) = \emptyset$ (resp. |S(L)| = 1). It is known (see [2, 6]) that there are (finite) examples of poor and rigid logics.

PROPOSITION 3. Suppose that L is a poor logic. Put $L_{\alpha} = L$ for any $\alpha \in I$. Then $\prod_{\alpha \in I} L_{\alpha}$ is also a poor logic.

PROOF. Take the mapping $f: L \to \prod_{\alpha \in I} L_{\alpha}$ such that f(k) = (k, k, k...) for any $k \in L$. If $s \in \mathbb{S}(\prod_{\alpha \in I} L_{\alpha})$ then $sf \in \mathbb{S}(L)$.

DEFINITION 7. A mapping $f: L_1 \to L_2$ is called an embedding if f is injective and the following requirements are satisfied.

- (i) f(1) = 1;
- (ii) f(a') = f(a)' for any $a \in L_1$;
- (iii) $a \le b$ if and only if $f(a) \le f(b)$;
- (iv) if $a \le b'$ then $f(a \lor b) = f(a) \lor f(b)$.

PROPOSITION 4. Let K be a compact convex subspace of a LCTLS. Take the logic L_1 constructed in [6, Theorem, p. 321]. Thus $S(L_1) = K$ and moreover, $C(L_1) = \{0, 1\}$ and L_1 can be embedded into a poor logic L_2 with $C(L_2) = \{0, 1\}$.

PROOF. We must assume here that the reader is well acquainted with the paper [6] and with the Greechie representation of logics (see [2]). It follows immediately from

108 PAVEL PTÁK

the construction of [6] that $C(L_1) = \{0, 1\}$ (see e.g. the plan of the construction, p. 321). Further, let us consider the Greechie diagram D_1 of L_1 and the Greechie diagram D of a finite poor logic L exhibited in [2]. Let us choose "points" $d_1 \in D_1$, $d_2 \in D$ such that d_1 , d_2 belong to exactly one Boolean block of D_1 , D. Form a new Greechie diagram D_2 by taking the union $D_1 \cup D$ and then "identifying" the points d_1 , d_2 . The diagram D_2 then represents the required logic L_2 .

We are now ready to prove our result.

THEOREM. Let B be a Boolean algebra and let K be a compact convex subset of a LCTLS. Then there exists a logic L such that C(L) is Boolean isomorphic to B and S(L) is affinely homeomorphic to K.

PROOF. We may suppose that B is a Boolean algebra of subsets of a set A. Take a logic M such that $C(M) = \{0,1\}$, S(M) = K and denote by P the poor extension of M (Proposition 4). Take a point $a \in A$ and write $L_c = P$ if $c \in A - \{a\}$, $L_a = M$. Consider the logic $R = \prod_{d \in A} L_d$. The desired logic L will now be obtained as a sublogic of R. Let us describe the elements of L. An element $r \in R$ belongs to L if and only if there exists a finite partition \mathfrak{P} of A, $\mathfrak{P} = \{A_i \mid i = 1, 2, \ldots, n\}$ such that $A_i \in B$ for any $i, 1 \leq i \leq n$, and $r_p = r_q$ as soon as $\{p, q\} \subset A_i$ for an index $i, 1 \leq i \leq n$. We are to show that L is a logic with C(L) = B and S(L) = K.

Obviously, $1 \in L$ and if $k \in L$ then $k' \in L$. If $k, h \in L$, $k \ge h$ then $k = h \lor (k \land h')$. Indeed, if $\mathfrak{P}, \mathfrak{R}$ are partitions corresponding to k, h then $\mathfrak{P} \cap \mathfrak{R}$ is the partition corresponding to $k' \land h$. The rest is obvious. Thus L is a logic.

Further, since $C(L_d) = \{0, 1\}$ for any $d \in A$ then any central element of L must have only the elements 0, 1 for the coordinates. One can check easily that $k = \{k_d \mid d \in A\}$, where any k_d is either 0 or 1, belongs to L if and only if $D = \{d \mid k_d = 1\} \in B$. Consequently, C(L) = B.

It remains to prove that S(L) = K. Since S(M) = K, it suffices to show that there is an affine homeomorphism $g: S(L) \to S(M)$. Assume that $s \in S(L)$. For any $m \in M$, denote by k^m the element of L which has m for all its coordinates. Define g(s) such that $g(s)(m) = s(k^m)$. We need to show that g(s) is injective.

Let us suppose that $g(s_1)=g(s_2)$. Take an element $k\in L$ and assume that \mathfrak{P} is the partition corresponding to k. Let A_1 be such a set of \mathfrak{P} that $a\in A_1$. Denote by $h=\{h_d\mid d\in A\}$ the element of L with $h_d=0$ if $d\in A_1$, $h_d=1$ otherwise. It follows from Proposition 3 that $s_1(k\wedge h)=s_2(k\wedge h)=0$. Since $g(s_1)=g(s_2)$, we see, again applying Proposition 3, that $s_1(k)=s_1(k\wedge h')=s_2(k\wedge h')=s_2(k)$. Hence the mapping $g\colon \mathfrak{S}(L)\to \mathfrak{S}(M)$ is injective and the proof is complete.

Let us state explicitly the following special corollary.

COROLLARY. Given a Boolean algebra B, there exists a poor (resp. rigid) logic L such that C(L) = B.

Let us observe in conclusion that a similar method yields an analogous result for σ -complete logics and σ -additive states. Naturally, the center then cannot be arbitrary since there are Boolean σ -algebras without any σ -additive state.

THEOREM. Let B be a Boolean σ -algebra of subsets of a set and let K be a compact convex subset of a LCTLS. Then there is a σ -complete logic L such that C(L) is Boolean σ -isomorphic to B and the space of σ -additive states on L is affinely homeomorphic to K.

REFERENCES

- 1. J. Brabec and P. Pták, On compatibility in quantum logics, Found. Phys. 12 (1982), 207-212.
- 2. R. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132.
- 3. S. Gudder, Uniqueness and existence properties of bounded observables, Pacific J. Math. 19 (1966), 81-93.
 - 4. _____, Stochastic methods in quantum mechanics, Elsevier, North-Holland, Amsterdam, 1979.
- 5. V. Maňasová and P. Pták, On states on the product of logics, Internat. J. Theoret. Phys. 20 (1981), 451-456.
- 6. F. W. Shultz, A characterization of state spaces of orthomodular lattices, J. Combin. Theory Ser. A 17 (1974), 317-328.
 - 7. V. Varadarajan, Geometry of quantum theory, vol. 1, Van Nostrand Reinhold, Princeton, N. J., 1968.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF PRAGUE, 16627-PRAGUE 6, CZECHOSLO-VAKIA