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LOGICS WITH GIVEN CENTERS AND STATE SPACES
PAVEL PTAK

ABSTRACT. Let B be a Boolean algebra and let K be a compact convex subset of a
locally convex topological linear space. Then there exists a logic with the center
Boolean isomorphic to B and with the state space affinely homeomorphic to K.

Introduction. In the quantum logic approach to the foundations of quantum
mechanics, one identifies the event structure of a system with an orthomodular
partially ordered set L (called usually a logic). The set of states is then represented
by the set S(L) of all probability measures on L (see [4,7]). It can be shown that
S(L) is a compact convex set and conversely, it was proved by F. W. Shultz [6] that
any compact convex subset of a locally convex topological linear space is affinely
homeomorphic to (L) for a logic L.

The center C(L) of a logic L is the subset of L consisting of all “absolutely
compatible” elements. It is known that the center of L is a Boolean algebra (see
[1, 4]). Obviously, any Boolean algebra is the center of a logic.

Let us now consider the center and the state space simultaneously. The question is
if for any Boolean algebra B and any compact convex subset of a LCTLS there
exists a logic L such that C(L) = B and 5(L) = K. We answer the question in the
affirmative. In the construction we use, among other tools, the result of Shultz [6]
and the technique of R. Greechie [2] for constructing orthomodular posets.

Notions. Results. Let us first review the basic definitions and state some auxiliary
propositions.

DEFINITION 1. A logic is a set L endowed with a partial ordering < and a unary
operation ’ such that:

@)0,1 €L;

(i)as<b=b <a' foranya, b € L,

(iii) (a’yY = aforanya € L;

(iviaVa =1foranya € L;

(v) V_,a,exists in L whenevera, € L, a, < aj forn # k;

(viyb=aV (b N a’)whenevera,b € L,a < b.

In the sequel, we shall reserve the symbol L for logics. One can prove easily that if
a,b€L,a<b thenaV b,a N bexistsin L.

DEFINITION 2. Two elements a, b € L are called compatible if there are three
elementsc,d,e € Lsuchthatc<d',d<e’,e<canda=cVd,b=cVe.
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DEFINITION 3. An element a € L is called central if a is compatible to any
element of L. We denote by C(L) the set of all central elements of L and call C(L)
the center of L.

PROPOSITION 1. The set C(L) with the operations ', N/, /\ inherited from L is a
Boolean algebra.

PROOF. See [1, 4].

DEFINITION 4. Let {L,|a € I} be a collection of logics. Denote by Il ., L, the
ordinary Cartesian product of the sets L, and endow the set II,,L, with the
relation < and the unary operation ’ as follows. If k = {k,|a € I} €Il ,¢,L, and
h={h,Ja €I} €ll,¢;L,, then k < h (resp. k' = h) if and only if k, < h_ (resp.
k! = h,) for any a € I. The set [ ,;L, with the above defined <, ’ is called the
product of the collection {L,|a € I}.

PROPOSITION 2. Let {L, | a € I} be a collection of logics. Then Il ., L, is a logic. If
C(L,) = {0,1} for any a € I then C(Il ,c;L,) is Boolean isomorphic to the Boolean
algebra of all subsets of I.

PROOF. See (3, 5].
DEFINITION 5. A state on a logic L is a mapping s: L — (0, 1) such that:
@OsH=1;

(ii)ifa, b € L, a < b’ then s(a V b) = s(a) + s(b).

Let us denote by S(L) the set of all states on L. By a result of F. W. Shultz [6],
any compact convex subset of a LCTLS equals, up to an affine homeomorphism,
S(L) for a logic L (and vice versa, which is obvious).

DEFINITION 6. A logic L is called poor (resp. rigid) if S(L) = @ (resp. |S(L)|= 1).

It is known (see [2, 6]) that there are (finite) examples of poor and rigid logics.

PROPOSITION 3. Suppose that L is a poor logic. Put L, = L for any a € I. Then
I, L, is also a poor logic.

ProoOF. Take the mapping f: L - Il ,;L, such that f(k) = (k, k, k...) for any
ke L Ifs e S5l L,) thensf € S(L).

DEFINITION 7. A mapping f: L, — L, is called an embedding if f is injective and
the following requirements are satisfied.

@) =1

(i) f(a’) = f(a) foranya € L,;

(iii) @ < b if and only if f(a) < f(b);

(iv) if a < b’ then f(a VvV b) = f(a) V f(b).

PROPOSITION 4. Let K be a compact convex subspace of a LCTLS. Take the logic L,
constructed in [6, Theorem, p. 321]. Thus S(L,) = K and moreover, C(L,) = {0,1}
and L, can be embedded into a poor logic L, with C(L,) = {0,1}.

PrROOF. We must assume here that the reader is well acquainted with the paper [6]
and with the Greechie representation of logics (see [2]). It follows immediately from
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the construction of [6] that C(L,) = {0, 1} (see e.g. the plan of the construction, p.
321). Further, let us consider the Greechie diagram D, of L, and the Greechie
diagram D of a finite poor logic L exhibited in [2]. Let us choose “points” d, € D,,
d, € D such that d|, d, belong to exactly one Boolean block of D,, D. Form a new
Greechie diagram D, by taking the union D; U D and then “identifying” the points
d,, d,. The diagram D, then represents the required logic L,.

We are now ready to prove our result.

THEOREM. Let B be a Boolean algebra and let K be a compact convex subset of a
LCTLS. Then there exists a logic L such that C(L) is Boolean isomorphic to B and
S(L) is affinely homeomorphic to K.

PrOOF. We may suppose that B is a Boolean algebra of subsets of a set 4. Take a
logic M such that C(M) = {0, 1}, S(M) = K and denote by P the poor extension of
M (Proposition 4). Take a point a € 4 and write L, = Pifc€ A4 — {a}, L, = M.
Consider the logic R = I, L,. The desired logic L will now be obtained as a
sublogic of R. Let us describe the elements of L. An element r € R belongs to L if
and only if there exists a finite partition & of 4, P = {4,|i = 1,2,..., n} such that
A; € B for any i,1 <i<n, and r,=r, as soon as {p,q} C A, for an index
i,1 < i< n. We are to show that L is a logic with C(L) = Band (L) = K.

Obviously, l € Landif k€ Lthenk’ € L. If k, h€ L, k=hthen k =h V (k
A R'). Indeed, if ¥, R are partitions corresponding to k, » then P N R is the
partition corresponding to k’ A h. The rest is obvious. Thus L is a logic.

Further, since C(L,) = {0, 1} for any d € 4 then any central element of L must
have only the elements 0, 1 for the coordinates. One can check easily that k = {k,|d
€ A}, where any k, is either 0 or 1, belongs to L if and only if D = {d|k, = 1} € B.
Consequently, C(L) = B.

It remains to prove that 5(L) = K. Since S(M) = K, it suffices to show that
there is an affine homeomorphism g: S(L) - S(M). Assume that s € S(L). For
any m € M, denote by k™ the element of L which has m for all its coordinates.
Define g(s) such that g(s)(m) = s(k™). We need to show that g is injective.

Let us suppose that g(s,) = g(s,). Take an element k € L and assume that ¥ is
the partition corresponding to k. Let 4, be such a set of ¢ that a € 4,. Denote by
h={h,|d € A} the element of L with h,=0 if d € A, h,= 1 otherwise. It
follows from Proposition 3 that s,(k A\ h) = s,(k A\ h) = 0. Since g(s,) = g(s,), we
see, again applying Proposition 3, that s,(k) = s,(k A R’) = s,(k A B') = sy(k).
Hence the mapping g: S(L) — S(M) is injective and the proof is complete.

Let us state explicitly the following special corollary.

COROLLARY. Given a Boolean algebra B, there exists a poor (resp. rigid) logic L
such that C(L) = B.

Let us observe in conclusion that a similar method yields an analogous result for
o-complete logics and o-additive states. Naturally, the center then cannot be arbi-
trary since there are Boolean o-algebras without any g-additive state.
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THEOREM. Let B be a Boolean o-algebra of subsets of a set and let K be a compact
convex subset of a LCTLS. Then there is a o-complete logic L such that C(L) is
Boolean o-isomorphic to B and the space of o-additive states on L is affinely homeomor-
phic to K.
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