CONDITIONS FOR SOME POLYGONAL FUNCTIONS TO BE BAZILEVIČ

B. A. CASE AND J. R. OUINE

ABSTRACT. Univalent functions in the disc whose image is a particular eight-sided polygonal region determined by two parameters are studied. Whether such a function is Bazilevič is determined in terms of the two parameters, and the set of real α 's is specified such that the function is (α, β) Bazilevič for some β . For any interval [a, b] where $1 < a \le 3 \le b$, a function of this type which is $(\alpha, 0)$ Bazilevič precisely when α is in this interval is found. Examples are given of non-Bazilevič functions with polygonal images and Bazilevič functions which are $(\alpha, 0)$ Bazilevič for a single value α .

Introduction and notation. For $\alpha > 0$ and β real, let $B(\alpha, \beta)$ be the class of (α, β) Bazilevič functions introduced in [2]. Sheil-Small [7] established that $\{(\alpha, \beta) \mid \alpha > 0, f \in B(\alpha, \beta)\}$ is a closed, convex subset of the half-plane $\alpha > 0$. Campbell and Pearce [3] refer to this set as the representation projection of the function, and we will refer to its intersection with the α -axis as the α -projection which, if nonempty, is a point or an interval. In this paper we look at the α -projections for a two parameter family of functions $f(z; \psi_1, \psi_2)$ mapping |z| < 1 conformally onto the interior of a polygon whose geometry is determined by the two parameters. The α -projection is given in terms of the endpoints of the interval as functions of the parameters ψ_1, ψ_2 . Those $f(z; \psi_1, \psi_2)$ for which $\psi_1 > 2\psi_2$ are not in any $B(\alpha, \beta)$; i.e., we also have a subfamily consisting of non-Bazilevič functions. The type of non-Bazilevič function of Plaster [6] is a limiting function of the above subfamily. Our family also includes bounded functions whose α -projection is a single point.

We now describe the functions $f(z; \psi_1, \psi_2)$. Let $f(z; \psi_1, \psi_2)$ be the unique univalent analytic function in |z| < 1 (normalized f(0) = 0; f'(0) > 0) with continuation to |z| = 1 having a closed polygonal image $A_0 A_1 A_2 \cdots A_8$, $A_0 = A_8$ (Figure 1) determined by the angle parameters

(1)
$$0 < \psi_1 < \pi/2, \qquad 0 < \psi_2 < \pi/4$$

as follows:

(2)
$$A_5 = -1 - i;$$
 $A_6 = 1 - i;$ $A_7 = 1 + i;$ $A_8 = A_0 = -1 + i;$ $A_1 = -1 + i \tan \psi_2;$ $A_4 = \overline{A_1};$ $\arg A_2 = 3\pi/4;$ $\arg(A_2 - A_1) = \psi_1;$ $A_3 = \overline{A_2}.$

Received by the editors December 22, 1981.

1980 Mathematics Subject Classification. Primary 30C45.

Key words and phrases. Univalent function, Bazilevič function.

(The figure suggests that we refer to $f(z; \psi_1, \psi_2)$ satisfying (1) and (2) as a keyhole function.) The exterior angles are denoted $e_k = \pi - \angle A_k$ in the usual manner (see Nehari [5, p. 188]). Hence, when $\angle A_k < \pi$, then $0 < e_k < \pi$, and when $\angle A_k > \pi$, $-\pi < e_k < 0$. The exterior angles have values

(3)
$$e_1 = e_4 = \pi/2 + \psi_1; \quad e_2 = e_3 = -\pi/2 - \psi_1; \\ e_5 = e_6 = e_7 = e_8 = e_0 = \pi/2.$$

A remark is appropriate about two of the cases for the limiting values of the parameters ψ_1, ψ_2 . When $0 < \psi_2 < \pi/4$ and $\psi_1 \to 0$, the limit function is close-to-convex. For $0 < \psi_1 < \pi/2$ and $\psi_2 \to 0$, the limit function may be thought of as the type of non-Bazilevič function described by Plaster [6].

Some preliminary results. We will need the following theorem of Sheil-Small.

THEOREM 1 (SHEIL-SMALL). If $f(z) \in B(\alpha, \beta)$ then (4)

$$\int_{\theta_1}^{\theta_2} \left\{ 1 + \operatorname{Re} \frac{re^{i\theta} f''(re^{i\theta})}{f'(re^{i\theta})} + (\alpha - 1) \operatorname{Re} \frac{re^{i\theta} f'(re^{i\theta})}{f(re^{i\theta})} - \beta \operatorname{Im} \frac{re^{i\theta} f'(re^{i\theta})}{f(re^{i\theta})} \right\} d\theta > -\pi,$$

for 0 < r < 1 and $0 < \theta_2 - \theta_1 < 2\pi$.

Conversely, if f(z) is analytic in |z| < 1, with f(0) = 0, $f(z) \neq 0$ (0 < |z| < 1) and $f'(z) \neq 0$ (|z| < 1), and if f(z) satisfies (4) for 0 < r < 1 and $0 < \theta_2 - \theta_1 < 2\pi$ when $\alpha \ge 0$ and β is real, then f(z) is univalent in |z| < 1 and is in $B(\alpha, \beta)$ for $\alpha > 0$.

For convenience we denote the integrand of (4) as $F(f, \alpha, \beta; z)$, and the entire left side integral as $I_r(\theta_1, \theta_2)$. We define, additionally, a function $J(\theta_1, \theta_2)$ for $0 \le \theta_2 - \theta_1 \le 2\pi$:

(5)
$$J(\theta_{1}, \theta_{2}) = \liminf_{\substack{r \to 1^{-} \\ \mu_{1} \to \theta_{1} \\ \mu_{2} \to \theta_{2}}} I_{r}(\mu_{1}, \mu_{2}).$$

Next we note a lemma which is needed to show that the representation projection of a keyhole function is symmetric in the α -axis.

LEMMA 1. If
$$f \in B(\alpha, \beta)$$
 then $\tilde{f} \in B(\alpha, -\beta)$.

PROOF. Using the elementary properties of conjugates, we see that $F(\bar{f}, \alpha, -\beta; z) = F(f, \alpha, \beta; \bar{z})$ where $\bar{f}(z) = \overline{f(\bar{z})}$. The lemma now follows from Theorem 1.

The next lemma shows that if the Sheil-Small condition with weak inequality holds in the limit as $r \to 1^-$, the functions $f(z; \psi_1, \psi_2)$ are Bazilevič.

LEMMA 2. If f(z) is analytic in |z| < 1, with f(0) = 0, $f(z) \neq 0$ (0 < |z| < 1), $f'(z) \neq 0$ (|z| < 1), and $J(\theta_1, \theta_2) \ge -\pi$ for $0 \le \theta_2 - \theta_1 \le 2\pi$, then f(z) is Bazilevič.

PROOF. For fixed $\phi \in \mathbf{R}$ define

$$G_{\phi}(re^{i\tau}) = I_{r}(\phi - \tau, \phi + \tau) = \int_{-\tau}^{\tau} F(f, \alpha, \beta; re^{i(t+\phi)}) dt,$$

where 0 < r < 1, $0 < \tau < \pi$. The function G_{ϕ} is harmonic. One way to see this is to compute the Laplacian in polar coordinates, differentiate under the integral sign, and then use the fact that the integrand is harmonic as a function of r and t (see Baernstein [1, p. 153]). Clearly $I_r(\theta_1, \theta_2) > -\pi$ for all $0 < \theta_2 - \theta_1 < 2\pi$ if and only if $G_{\phi}(re^{i\tau}) > -\pi$ for all $\phi \in R$, 0 < r < 1, and $0 < \tau < \pi$. The latter condition holds by the maximum principle for harmonic functions (Conway [4, p. 254]) when we show that for any fixed ϕ , and all a in the boundary of the upper half disc, $\liminf_{z \to a} G_{\phi}(z) \ge -\pi$.

We examine this limit in each of the four cases: |a| = 1; 0 < a < 1; -1 < a < 0; a = 0. For $a = e^{i\tau}$ we have

$$\liminf_{z \to a} G_{\phi}(z) = \liminf_{\substack{r \to 1^- \\ \mu \to \tau}} G_{\phi}(re^{i\mu}) \geq J(\phi - \tau, \phi + \tau) \geq -\pi,$$

where the first inequality is by the definition of J and the second by hypothesis. If 0 < a < 1,

$$\liminf_{z\to a} G_{\phi}(z) = \lim_{\substack{r\to a\\ \tau\to 0}} G_{\phi}(re^{i\tau}) = \int_{\phi}^{\phi} F(f,\alpha,\beta;re^{it}) dt = 0 > -\pi.$$

If -1 < a < 0, using the Mean Value Theorem for harmonic functions (Conway [4, p. 253]) and the fact that $F(f, \alpha, \beta; 0) = \alpha$, we have

$$\liminf_{z \to a} G_{\phi}(z) = \lim_{\substack{r \to -a \\ \tau \to \sigma}} G_{\phi}(re^{i\tau}) = \int_{\phi - \pi}^{\phi + \pi} F(f, \alpha, \beta; re^{it}) dt = 2\pi\alpha > 0 > -\pi.$$

If a=0,

$$\liminf_{z\to a} G_{\phi}(re^{i\tau}) = \inf_{0 \le \tau \le \pi} 2\tau\alpha = 0 > -\pi.$$

This completes the proof of the lemma.

The main theorem. We now determine the range of α 's for which $f(z; \psi_1, \psi_2)$ is $(\alpha, 0)$ Bazilevič.

THEOREM 2. $f(z; \psi_1, \psi_2) \in B(\alpha, 0)$ if and only if

(6)
$$\psi_1/\psi_2 \le \alpha - 1 \le (\pi/2 - \psi_1)/(\pi/4 - \psi_2).$$

Also, $f(z; \psi_1, \psi_2)$ is Bazilevič (for some (α, β) , $\alpha > 0$) if and only if $\psi_1 \le 2\psi_2$.

PROOF. For keyhole $f(z; \psi_1, \psi_2)$, let $J(\theta_1, \theta_2)$ be defined as in (5). We note that if neither $f(e^{i\theta_1})$ nor $f(e^{i\theta_2})$ is a vertex of the polygon, then the limit actually exists in (5) and

(7)
$$J(\theta_1, \theta_2) = (\alpha - 1) \left(\arg f(e^{i\theta_2}) - \arg f(e^{i\theta_1}) \right) + \sum e_k,$$

where arg $f(re^{i\theta})$ is defined continuously for $\theta_1 \le \theta \le \theta_2$, and the summation is over all k for which the vertex A_k is on the curve $f(e^{i\theta})$, $\theta_1 < \theta < \theta_2$. By an analysis near points whose image is a vertex, we can verify that (7) also holds if $f(e^{i\theta_1})$ or $f(e^{i\theta_2})$ is a vertex, provided we take the sum over all k with A_k on $f(e^{i\theta})$, $\theta_1 \le \theta \le \theta_2$, replacing e_k by $\min\{0, e_k\}$ if $A_k = f(e^{i\theta_1})$ or $A_k = f(e^{i\theta_2})$.

We see that $\partial J/\partial \theta_2$ is positive when $f(e^{i\theta_2})$ is on the open segment $\overline{A_{j-1}A_{j}}$ and j=1,3,5,6,7,8 and negative when $f(e^{i\theta_2})$ is on the segment for j=2,4. Also for fixed θ_1 , if $f(e^{i\omega})=A_k$, the jump of $J(\theta_1,\theta_2)$ at $\theta_2=\omega$ is e_k . Since J is lower semicontinuous, when we examine the signs of the e_k 's as in (3), we see that for fixed θ_1 , $J(\theta_1,\theta_2)$ may have a local minimum only when $f(e^{i\theta_2})=A_2$ or A_4 . A similar analysis gives that for θ_2 fixed, $J(\theta_1,\theta_2)$ may have a local minimum only when $f(e^{i\theta_1})=A_1$ or A_3 . Now suppose ω_k is such that $f(e^{i\omega_k})=A_k$ for $0 \le \omega_k \le 2\pi$ for $k=1,\ldots,8$. Then we have $\min_{0\le \theta_2-\theta_1\le 2\pi}J(\theta_1,\theta_2)$ is the minimum of the four numbers $J(\omega_1,\omega_2)$, $J(\omega_1,\omega_4)$, $J(\omega_3,\omega_4)$ and $J(\omega_3,\omega_2+2\pi)$. We now compute, using (7),

$$J(\omega_{1}, \omega_{2}) = e_{2} + (\alpha - 1)(3\pi/4 - (\pi - \psi_{2}))$$

$$= -\pi/2 - \psi_{1} + (\alpha - 1)(-\pi/4 + \psi_{2}),$$

$$J(\omega_{1}, \omega_{4}) = e_{2} + e_{3} + (\alpha - 1)((\pi + \psi_{2}) - (\pi - \psi_{2}))$$

$$= -\pi - 2\psi_{1} + (\alpha - 1)(2\psi_{2}),$$

$$J(\omega_{3}, \omega_{2} + \pi) = \sum_{j=1}^{8} e_{j} + (\alpha - 1)\left(\frac{11\pi}{4} - \frac{5\pi}{4}\right) = 2\pi + (\alpha - 1)\left(\frac{3\pi}{2}\right),$$

$$J(\omega_{3}, \omega_{4}) = J(\omega_{1}, \omega_{2}).$$

Now since $J(\omega_3, \omega_2 + \pi) > -\pi$, the minimum of the four numbers above is greater than or equal to $-\pi$ if and only if $J(\omega_1, \omega_2) \ge -\pi$ and $J(\omega_1, \omega_4) \ge -\pi$. These two inequalities yield relationship (6) of the theorem, and thus the first part of the theorem follows from Theorem 1 and Lemma 2.

To see the second part of the theorem, note that if $f(z; \psi_1, \psi_2) \in B(\alpha, \beta)$ then, by Lemma 1 and symmetry, $f(z; \psi_1, \psi_2) \in B(\alpha, -\beta)$. Since $\{(\alpha, \beta) \mid f(z) \in B(\alpha, \beta)\}$ is convex, this implies $f(z) \in B(\alpha, 0)$. Thus, by the first part of the theorem we must have $((\pi/2 - \psi_1)/(\pi/4 - \psi_2)) - \psi_1/\psi_2$ nonnegative, which holds if and only if $2\psi_2 \ge \psi_1$.

Some remarks about the α -projection. The second part of our main theorem establishes that if $\psi_1 \le 2\psi_2$ then $f(z; \psi_1, \psi_2)$ has nonempty α -projection [a, b], $a \le b$, where

(8)
$$a = (\psi_1/\psi_2) + 1, \quad b = ((\pi/2 - \psi_1)/(\pi/4 - \psi_2)) + 1.$$

For $\psi_1 \le 2\psi_2$, using (8), we see $a \le 3 \le b$. Thus we have

COROLLARY 1. $f(z; \psi_1, \psi_2) \in B(\alpha, \beta)$ for some (α, β) only if $f(z; \psi_1, \psi_2) \in B(3, 0)$.

COROLLARY 2. The α -projection of a keyhole function is $\alpha=3$ if and only if $\psi_1=2\psi_2$.

From (8) we also note that if a=3 then b=3, so the only intervals which may be α -projections for keyhole functions satisfy $a \le 3 \le b$. Conversely, given an interval [a, b], $a \le 3 \le b$, we can exhibit the condition on ψ_1, ψ_2 , hence, the specific keyhole function, for which a given interval is the α -projection.

COROLLARY 3. The intervals [a, b], $a \neq b$, which are α -projections of keyhole Bazilevič functions satisfy 1 < a < 3, b > 3. Every such interval is the α -projection of the $f(z; \psi_1, \psi_2)$ parameterized by

(9)
$$\psi_1 = \frac{\pi}{4}((a-1)(b-3))/(b-a), \quad \psi_2 = \psi_1/(a-1).$$

The equations (9) follow directly from (8).

Specification of allowable values for any two of ψ_1 , ψ_2 , a, b as used above allows for computation of the other two using (8) and (9). For example, the interval form when $0 < \psi_1 = \psi_2 < \pi/4$ is $[2, 3 + (\psi_1/(\pi/4 - \psi_1))]$, so for $\psi_1 = \psi_2 = \pi/8$, the interval for which the function is $(\alpha, 0)$ Bazilevič is [2, 4] and, in general, as $\psi_1 = \psi_2 \rightarrow \pi/4$, then $b \rightarrow \infty$, and as $\psi_1 = \psi_2 \rightarrow 0$, then $b \rightarrow 3$.

REFERENCES

- 1. A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169.
- 2. I. E. Bazilevič, On a case of integrability in quadratures of the Löwner-Kufarev equation, Mat. Sb. 37 (1955), 471-476. (Russian)
- 3. D. Campbell and K. Pearce, Generalized Bazilevič functions, Rocky Mountain J. Math. 9 (1979), 197-226.
 - 4. J. B. Conway, Functions of one complex variable, Springer-Verlag, New York, 1978.
 - 5. Z. Nehari, Introduction to complex analysis, rev. ed., Allyn and Bacon, Boston, Mass., 1968.
 - 6. J. C. Plaster, A simple geometric criterion for non-Bazilevičness, Proc. Amer. Math. Soc. (to appear).
 - 7. T. Sheil-Small, On Bazilevič functions, Quart, J. Math. Oxford Ser. (2) 23 (1972), 135-42.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, THE FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306