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CONDITIONS FOR SOME POLYGONAL FUNCTIONS

TO BE BAZILEVIC

B. A. CASE AND J. R. QUINE

Abstract. Univalent functions in the disc whose image is a particular eight-sided

polygonal region determined by two parameters are studied. Whether such a

function is Bazilevic is determined in terms of the two parameters, and the set of real

a's is specified such that the function is (a, ß) Bazilevic for some ß. For any interval

[a,b] where 1 < a < 3 *s b, a function of this type which is (a,0) Bazilevic

precisely when a is in this interval is found. Examples are given of non-Bazilevic

functions with polygonal images and Bazilevic functions which are (a.O) Bazilevic

for a single value a.

Introduction and notation. For a > 0 and ß real, let B(a, ß) be the class of (a, ß)

Bazilevic functions introduced in [2]. Sheil-Small [7] established that {(a, ß) | a > 0,

/ G B(a, ß)} is a closed, convex subset of the half-plane a > 0. Campbell and

Pearce [3] refer to this set as the representation projection of the function, and we

will refer to its intersection with the a-axis as the a-projection which, if nonempty, is

a point or an interval. In this paper we look at the a-projections for a two parameter

family of functions/(z; ^,, t^2) mapping | z |< 1 conformally onto the interior of a

polygon whose geometry is determined by the two parameters. The a-projection is

given in terms of the endpoints of the interval as functions of the parameters \px, ̂ 2.

Those/(z; i//,, \p2) for which \px > 2\p2 are not in any B(a, ß); i.e., we also have a

subfamily consisting of non-Bazilevic functions. The type of non-Bazilevic function

of Plaster [6] is a limiting function of the above subfamily. Our family also includes

bounded functions whose a-projection is a single point.

We now describe the functions/(z; \px, \¡/2). Let/(z; \px, \¡/2) be the unique univa-

lent analytic function in | z |< 1 (normalized /(0) = 0; /'(0) > 0) with continuation

to |z|= 1 having a closed polygonal image A0AXA2 ■ ■ ■ As, A0 — A$ (Figure 1)

determined by the angle parameters

(1) 0<4>i<7T/2, 0<l//2<77/4

as follows:

(2) A5 = -\-i;    A6=\-i;   A7 = I + i;    As=A0 = -\+i;

Ax - —1 + ¿tan t//2;    A4- Ax ;    arg A2 - lm/A;

arg(A2-Ax) = ^;   A3 = A2 .
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(The figure suggests that we refer to/(z; \px, 4>2) satisfying (1) and (2) as a keyhole

function.) The exterior angles are denoted ek = ti — ¿_Ak in the usual manner (see

Nehari [5, p. 188]). Hence, when /_Ak < tt, then 0 < ek < tt, and when ¿Ak > tt,

~tt < ek< 0. The exterior angles have values

(3)
e, = e. 77/2 + ^,;    e2 = e3

e,, = <?,

-tt/2 - <PX ;

■n/2.

A remark is appropriate about two of the cases for the limiting values of the

parameters \px, t^2. When 0 < \p2 < tt/4 and t^, — 0, the limit function is close-to-

convex. For 0 <\¡/x < tt/2 and ip2 -» 0, the limit function may be thought of as the

type of non-Bazilevic function described by Plaster [6].
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Figure 1

Some preliminary results. We will need the following theorem of Sheil-Small.

Theorem 1 (Sheil-Small). Iff(z) G B(a, ß) then

(4)

re-

f
re'ef"(rei8)

\ + Rcre \ (r*   } +(«
rei6f'(re'0) re'ef'(re'e)l)Rerej1^ ' -ß\mre ¿KZ }\d0>

f{rem) Are'9)

for0<r<\ and0<62- 6X < 2tr.

Conversely, iff(z) is analytic in \z\< 1, with /(0) = 0, f(z) ¥= 0 (0 <\ z \< I) and

f'(z) ¥> 0 (| z |< 1), and iff(z) satisfies (4) for 0 < r < 1 and 0 < 62 - 0, < 2m when

aX) and ß is real, then f(z) is univalent in \z\< \ and is in B(a, ß) for a > 0.
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For convenience we denote the integrand of (4) as F( f, a, ß; z), and the entire left

side integral as Ir(0x, 62). We define, additionally, a function J(8X, 82) for 0 *£ B2 —

0X < 2tt:

(5) J(6x,62) = \iminilr(px,p2).
r—* 1
(tfjf.fi,

Next we note a lemma which is needed to show that the representation projection

of a keyhole function is symmetric in the a-axis.

Lemma 1. /// G B(a, ß) then f G B(a, -/?).

Proof. Using the elementary properties of conjugates, we see that F(f, a, -ß; z)

= F(f, a, ß; z) where/(z) =/(z). The lemma now follows from Theorem 1.

The next lemma shows that if the Sheil-Small condition with weak inequality

holds in the limit as r -* 1", the functions/(z; tf/x, \¡/2) are Bazilevic.

Lemma 2. // f(z) is analytic in \ z |< 1, with /(0) = 0, f(z) ^ 0 (0 <| z |< 1),

f'(z) # 0 (| z |< 1), and J(8X, 82) > -tt for 0 =£ 02 - 0, < 2tt, then f(z) is Bazilevic.

Proof. For fixed <j> G R define

r. t *„ir\ - 11 a. - _ a. a- _^ - fT c-t ( i  o. i¿./tw*h¡ ¿tG^re") = lr(<¡> - t, <p + t) = fTF(f, a, ß; &**♦*)

where 0 < r < \, 0 < t < tt. The function G^ is harmonic. One way to see this is to

compute the Laplacian in polar coordinates, differentiate under the integral sign,

and then use the fact that the integrand is harmonic as a function of r and t (see

Baernstein [1, p. 153]). Clearly Ir(8x, 02) > -tt for all 0 < 02 - 8X < 2tt if and only if

G^,(re'T) > -tt for all <f> G R, 0 < r < 1, and 0 < t < tt. The latter condition holds

by the maximum principle for harmonic functions (Conway [4, p. 254]) when we

show that for any fixed (p, and all a in the boundary of the upper half disc,

\imini:^G^(z)>-TT.

We examine this limit in each of the four cases: | a |= 1; 0<a< 1; -1 <a<0;

a = 0. For a = e'T we have

liminfG^z) = liminf GÁre"1) > /(<p - r,<p + t) > -tt,
z^a r-. 1

where the first inequality is by the definition of J and the second by hypothesis. If

0<a<l,

liminf Gç(z) = lim G^(reiT) =t fV(/, a, ß; re") dt = 0 > -tt.
z^a r—a •'a

T-«0

If -1 < a < 0, using the Mean Value Theorem for harmonic functions (Conway [4,

p. 253]) and the fact that F(f, a, ß; 0) = a, we have

liminf G^z) = lim G+(reiT) = f*+"F(f, a, ß; re") dt = 2<na > 0 > -tt.
z — a r->-a "VtI

T-*7T
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If a — 0,

liminf(L(«?/T)=    inf   2ra = 0 > -tt.
z~a OSriir

This completes the proof of the lemma.

The main theorem. We now determine the range of a's for which f(z; tyx, tp2) is

(a, 0) Bazilevic.

Theorem 2./(z; *„ fc) G B(a,0) ifandonly if

(6) *i/fc<«~ l<(9/2-*.)/{v/4-h).

Also, f(z; \px, \¡/2) is Bazilevic (for some (a, ß), a > 0) if and only if\px < 2^2.

Proof. For keyhole/(z; \px, \p2), let J(0X, 02) be defined as in (5). We note that if

neither f(e'°') nor/(e'02) is a vertex of the polygon, then the limit actually exists in

(5) and

(7) J(ex,02) = (a - l)(arg/iy»>) - arg/(*"')) + ^ek,

where arg f(re'e) is defined continuously for 0X < 0 < 02, and the summation is over

all k for which the vertex Ak is on the curve f(e'e), 0, < 0 < 02. By an analysis near

points whose image is a vertex, we can verify that (7) also holds if f(e'e') orf(e'e-) is

a vertex, provided we take the sum over all k with Ak on f(e'e), 0, < 0 < 02,

replacing eA by min{0, ek) ifAk = f(eiS') or kA = f(eil>2).

We see that 9//302 is positive when f(e'$1) is on the open segment /4 ■ ,/l ■ and

j = 1,3,5,6,7,8 and negative when/(e'92) is on the segment for/ = 2,4. Also for

fixed 6X, if f(e'") — Ak, the jump of 7(0,, 02) at 02 = to is ek. Since J is lower

semicontinuous, when we examine the signs of the eks as in (3), we see that for fixed

0,, J(8X,62) may have a local minimum only when /(e'*J) = A2 or AA. A similar

analysis gives that for 02 fixed, J(8X,62) may have a local minimum only when

f(e'9') = Ax or Ay Now suppose uk is such that f(e'"k) = Ak for 0 «£ wA < 27r for

k = 1,...,8. Then we have minOc92_e|S;2wy(0|, 02) is the minimum of the four

numbers /(<d,,id2X •/(«,, <o4), /(id3, id4) and /(cd3, cd2 + 2tt). We now compute,

using (7),

/(«„«,) = e2 + (a - l)(3»/4 - (tt - ¡¿j)

= ^/2-*, + (a-l)(^/4 + *2),

/(td,,cd4) = e2 + e3 + (a - 1)((tt + i//2) - (tt - i//2))

= -*-2*, + (a-l)(2*2),

/(<03,<d2 + ,r) =  i eJ + (a- \)(^ -^-) ^2tt + (a- l)(^),

/(«3,W4) =/(id,,Cd2).

Now since /(w3, td2 + w) > -tt, the minimum of the four numbers above is greater

than or equal to -tt if and only if /(«,, co2) > -tt and /(w,, £o4) 3* -77. These two

inequalities yield relationship (6) of the theorem, and thus the first part of the

theorem follows from Theorem 1 and Lemma 2.
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To see the second part of the theorem, note that if f(z; \px,\p2) G B(a, ß) then, by

Lemma 1 and symmetry,/(z; \px, \f/2) G B(a, -ß). Since {(a, ß) \f(z) G B(a, ß)} is

convex, this implies/(z) G B(a, 0). Thus, by the first part of the theorem we must

have ((77/2 — ̂ ,)/(w/4 — t|/2)) — 4>x/4>2 nonnegative, which holds if and only if

2^2 >*,.

Some remarks about the a-projection. The second part of our main theorem

establishes that if \¡/x «í 2\p2 then f(z; \px, \p2) has nonempty a-projection [a, b],

a < b, where

(8) a = 0Mk) + l,       ¿ = ((77/2-^,)/(V4-^2)) + 1.

For ^/, *£ 2 ̂ 2, using (8), we see a < 3 «S b. Thus we have

Corollary l./(z; 4>x,xp2) G B(a, ß) for some (a, ß) only if f(z; i//,,^) G 5(3,0).

Corollary 2.  77îe a-projection of a keyhole function is a = 3 ;/ a«J o«/y //

*i = 2^2-

From (8) we also note that if a = 3 then b = 3, so the only intervals which may be

a-projections for keyhole functions satisfy a < 3 < ¿>. Conversely, given an interval

[a, b], a < 3 < b, we can exhibit the condition on \¡/x, ty2, hence, the specific keyhole

function, for which a given interval is the a-projection.

Corollary 3. The intervals [a, b], a ¥= b, which are a-projections of keyhole

Bazilevic functions satisfy 1 < a < 3, b > 3. Every such interval is the a-projection of

the f(z; \px, \p2) parameterized by

(9) ^x=^({a-\)(b-2>))/(b-a),   fc = *,/(ö^l).

The equations (9) follow directly from (8).

Specification of allowable values for any two of ipx,\p2, a, b as used above allows

for computation of the other two using (8) and (9). For example, the interval form

when 0 <\px =\p2< w/4 is [2,3 + (^x/(tt/A - <//,))], so for ^, = t//2 = tt/8, the

interval for which the function is (a, 0) Bazilevic is [2,4] and, in general, as

i¡/x = ip2 -» tt/4, then b -» 00, and as \px = i//2 -» 0, then 6 -» 3.
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