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ON THE NORMAL STRUCTURE COEFFICIENT AND

THE BOUNDED SEQUENCE COEFFICIENT

TECK-CHEONG LIM

Abstract. The two notions of normal structure coefficient and bounded sequence

coefficient introduced by Bynum are shown to be the same. A lower bound for the

normal structure coefficient in Lp, p > 2, is also given.

Let A' be a Banach space and C a closed convex bounded subset of X. For each x

in C, let R(x, C) — sup{||* — y\\: y in C} and let R(C) denote the Chebyshev

radius of C [2, p. 178]:

R(C) = inf{R(x,C): xinC).

Let D(C) denote the diameter of C, D(C) = sup{||x — y\\: x,y G C).

For a bounded sequence [xn] in X, the asymptotic diameter A({xn}) of {xn} is

defined to be limnsup{||xA. — xm ||: m s* n, k s* n}.

In [1], Bynum introduced the following two coefficients of X, called the normal

structure coefficient and the bounded sequence coefficient respectively:

N(X) — ini{D(C)/R(C): C closed convex bounded nonempty

subsets of X with \C\> 1},

BS(X) — sup j M: for every bounded sequence {xn) in X, there

exists y in Co (xn) such that M lim sup||x„ — y\\ < A({xn}) \.
n >

Another coefficient relating to the asymptotic radius of a sequence (see e.g. [3]) can

be defined as follows: Let {x„} be a bounded sequence in X. For each x in X, define

r(x, {*„}) = lim sup || x„ — x\\.
n

The number r({x„}) = inf{f(x, {x„}): x GCo(x„)} will be called the asymptotic

radius of {*„}, or more precisely, the asymptotic radius of {xn} w.r.t. Co(jc„). We

shall denote the coefficient

inî{A({xn})/r({x„}): (xn) bounded nonconvergent sequences in X]

byA(X).
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In [1], Bynum mentioned that the two coefficients 7V( A") and BS( X) are equal in a

separable Banach space X. In this note, we shall show that- the three coefficients are

equal in any Banach space X.

Theorem 1. For a Banach space X, N(X) = BS(X) = A(X).

Proof. It follows readily from the definition that BS(X) — A(X). Indeed, we

may assume that the sequences in the definition of BS(X) are nonconvergent.

Clearly BS( X) < A(X). On the other hand for each A > 1. A(X)/X belongs to the

defining set of BS(X) and thus BS(X) > A(X). Bynum [1] proved that N(X) <

BS(X). To prove that BS(X) < N(X). it suffices to show that for any bounded

convex nonempty set C with more than one point, there is a separable closed convex

subset C, such that R(CX) = R(C). Indeed, if {.v,,} is a dense sequence in C, and M

is a number in the defining set of BS( X). then

u  "u/   „      F    "     • R{y.Cx)     R(CX)     R(C)

To construct C,. we start out with a sequence of points {z,,} in C such that

\imn_00R(zn,C) = R(C). Let Ux = Co({z„}). Let Vx = [x G Ux: R(x,Ux) < R(C)}

and let Wx be a countable dense subset of Vx. For each x in Wx, let Dx be a sequence

of points in C such that R(x, Dx) > R(C). Let A", be the countable set

U {Dx: x G Wx) and U2 = Co(í/, U A,). We define similarly V2, W2 and X2 from

U2 and continue this process to obtain an increasing sequence of convex sets

¿7, C U2 C U3 C - • • c U„ C - - -. Let C, = Co( U U„). C, is separable. Since

R(zn,Cl)<R(zn,C) and lim„-00iv(z„, C) = R(C), we have R(CX) < R(C). From

the way U„ are constructed, R(x, Un+X) s* R(C) for each x G Un. It follows that

R(CX) > R(C) and the proof is complete.

For 0<jit«j and p > 2, denote by x(p) the unique solution of the equation

\x"-x - p- (\x- p)p~l =0

in the interval p/\ < x < 1. Define g(p), 0 < p < 1, by

1 + x(X A ju)''   '
gKl1) - Arl~      _"      , .^j-!

(.1 "•" XVA A M))

where X = 1 — ju.. We proved in [4] the following inequality in Lp (p > 2):

\\Xx + pyWf + g(p)\\x - y\\p ^X\\x\\" + p\\x\\p

and that

g(p) _   l+qP-x
sup    -=-r ,

0<M«1       r* (1  +af    '

where a is the unique solution of

(p - 2)x"-x + (p~ \)xp~2 -1=0

in the interval 0 =£ x ^ 1.
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Theorem 2,ForX=Lp,p> 2,

t          \+a»-x   V/P
N(X)>\1 +-Tl   (i + «rw

Proof. For a closed convex bounded set C in X, let R and D be the Chebyshev

radius and the diameter of C respectively. Let z be the Chebyshev center of C: For x,

y in C and 0 < p * 1, we have

II Az + u^ - xll' + g{p)\\z -y\\" < X\\z - x\\p + p\\y - x\\».

Taking sup over x in C and noting that R *£ sup{||Az + /¿y- — jc II: x G C}, we

obtain

/?^ + g(/i)||z rryH-',«*'AÄ' + psup{\\y - x\\p:x <EC).

It follows, after taking sup over>> in C, that (p + g(u))Rp «s ¡uZ)'' and hence

R      \        o<Mii      M    / I (1+a)""'

Therefore

/ j -|- ap-i   \l//7

A(A)>    1+ ,-,        •    P
V v J I

Remark 1. For p = 3 and 4, we have a = ^2 — 1 and 1 /2 and hence

(l+77T^f = <3-'6>l/,and(4/3r

respectively.
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