TENSOR PRODUCTS OF PRECLOSED OPERATORS ON C*-ALGEBRAS

LIANG-SEN WU

ABSTRACT. In this paper, we prove the following result: If A_1 , A_2 are C^* -algebras, and T_1 , T_2 are preclosed operators on A_1 , A_2 respectively, then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$. Furthermore, we show that the injective C^* -cross norm $\|\cdot\|_{\min}$ is reflexive on the algebraic tensor product $A_1 \otimes A_2$.

Since Turumaru [8] introduced tensor products of C^* -algebras, mysterious properties of C^* -cross norms received much attention from many specialists. For example, Takesaki [6] found out that the C^* -norm on the algebraic tensor product is not unique. Furthermore, Okayasu [3] showed that the minimal C^* -norm is not a uniform cross norm. Therefore, it is natural to ask the question: when σ and τ are bounded operators on C^* -algebras A_1 and A_2 , is $\sigma \otimes \tau$ bounded on $A_1 \otimes_{\min} A_2$? The answer is negative. In 1970, Okayasu [3] gave an example of σ , τ and C^* -algebras A_1 , A_2 in such a way that $\sigma \otimes \tau$ is unbounded on $A_1 \otimes_{\min} A_2$. Naturally, we will ask the question: what can we say about $\sigma \otimes \tau$ when σ and τ are bounded? What kind of properties of the operators σ and τ are preserved under the tensor product operation?

The purpose of this paper is to answer these questions. (1) If σ and τ are bounded, then $\sigma \otimes \tau$ is preclosed on $A_1 \otimes_{\min} A_2$. (2) If σ and τ are densely defined and preclosed, then $\sigma \otimes \tau$ is densely defined and preclosed on $A_1 \otimes_{\min} A_2$.

In Theorem 3, we show that the minimal C^* -cross norm is reflexive.

LEMMA 1. Let E be a Banach space and T be a densely defined linear operator on E. Then the following statements are equivalent.

- (1) T is preclosed.
- (2) T has a minimal closed linear extension; i.e., there exists a closed linear extension \overline{T} of T such that any closed linear extension of T is a closed linear extension of \overline{T} .
 - (3) For any $y \neq 0$ in $E_{\gamma}(0, y)$ is not in the closure of the graph of T_{γ} .
 - (4) $\mathfrak{N}(T^*)$ is total in E^* .
 - (5) $\mathfrak{I}(T^*)$ is $\sigma(E^*, E)$ -dense in E^* .

 $(T^* \text{ is the conjugate operator of } T; E^* \text{ is the conjugate space of } E.)$

Since we can find the proof of Lemma 1 in general Banach space text books, we omit it.

Received by the editors April 26, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L05; Secondary 47C15.

LEMMA 2. Let A_1 , A_2 be C^* -algebras and A_1^* and A_2^* be the conjugate spaces of A_1 , A_2 , respectively. Then the algebraic tensor product

$$F = A_1^* \otimes A_2^*$$

is $\sigma((A_1 \otimes_{\min} A_2)^*, A_1 \otimes_{\min} A_2)$ -dense in $(A_1 \otimes_{\min} A_2)^*$.

PROOF. From p. 208 in [7], if $f_1 \in A_1^*, f_2 \in A_2^*$ and $x = \sum_{i=1}^n x_{1,i} \otimes x_{2,i} \in A_1 \otimes A_2$, then

$$|\langle x, f_1 \otimes f_2 \rangle| \le ||x||_{\min} ||f_1|| ||f_2||.$$

Thus, we have $A_1^* \otimes A_2^* \subseteq (A_1 \otimes_{\min} A_2)^*$.

To be $\sigma((A_1 \otimes_{\min} A_2)^*, A_1 \otimes_{\min} A_2)$ -dense in $(A_1 \otimes_{\min} A_2)^*$ is equivalent to being total in $(A_1 \otimes_{\min} A_2)^*$ so we have to prove that F is total in $(A_1 \otimes_{\min} A_2)^*$.

Suppose $x \in A_1 \otimes_{\min} A_2$ and $\langle x, f \rangle = 0$, $\forall f \in F$. We shall show x = 0.

Let $\sigma(A_1)$ and $\sigma(A_2)$ be the state spaces of A_1 and A_2 respectively, $\omega_1 \in \sigma(A_1)$ and $\omega_2 \in \sigma(A_2)$.

Let Π_{ω_1} and Π_{ω_2} be the cyclic representations corresponding to ω_1 and ω_2 with representation Hilbert spaces \mathfrak{G}_{ω_1} and \mathfrak{G}_{ω_2} respectively. We construct the tensor representation of Π_{ω_1} and Π_{ω_2} ,

$$\Pi_{\omega} = \Pi_{\omega_1} \otimes \Pi_{\omega_2}$$

Therefore, for all $\xi_1, \eta_1 \in \mathfrak{G}_{\omega_1}$ and $\xi_2, \eta_2 \in \mathfrak{G}_{\omega_2}$,

$$(\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) | \eta_1 \otimes \eta_2) = \langle x, f \otimes g \rangle = 0,$$

in which $\langle x_1, f \rangle = (\prod_{\omega_1} (x_1) \xi_1 | \eta_1)$ and $\langle x_2, g \rangle = (\prod_{\omega_2} (x_2) \xi_2 | \eta_2)$. Then

$$\left(\Pi_{\omega}(x)(\xi_1\otimes\xi_2)\,|\,\sum_{j=1}^m\eta_{1,j}\otimes\eta_{2,j}\right)=0.$$

Hence $\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) \perp \mathfrak{G}_{\omega_1} \otimes \mathfrak{G}_{\omega_2}$. Since $\mathfrak{G}_{\omega_1} \otimes \mathfrak{G}_{\omega_2}$ is dense in \mathfrak{G}_{ω} , $\Pi_{\omega}(x)(\xi_1 \otimes \xi_2) = 0$; also

$$\Pi_{\omega}(x)\left(\sum_{i=1}^n \xi_{1,i} \otimes \xi_{2,i}\right) = 0, \qquad \Pi_{\omega}(x) = 0.$$

This implies

$$\|x\|_{\min} = \operatorname{Sup}\left\{\|\Pi_{\omega}(x)\| \colon \omega = \omega_1 \otimes \omega_2, \frac{\omega_1 \in \sigma(A_1)}{\omega_2 \in \sigma(A_2)}\right\} = 0.$$

Thus we have x = 0. Q.E.D.

THEOREM 1. Let A_1 and A_2 be C^* -algebras and T_1 and T_2 be densely defined preclosed operators on A_1 and A_2 . Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$.

PROOF. From Lemma 1, as T_1 and T_2 are densely defined preclosed operators on A_1 and A_2 , it follows that $\mathfrak{N}(T_1^*)$ is $\sigma(A_1^*, A_1)$ -dense in A_1^* and $\mathfrak{N}(T_2^*)$ is $\sigma(A_2^*, A_2)$ -

It is easy to verify $\mathfrak{N}(T_1^*) \otimes \mathfrak{N}(T_2^*)$ is $\sigma((A_1 \otimes_{\min} A_2)^*, (A_1 \otimes_{\min} A))$ -dense in $A_1^* \otimes A_2^*$.

By Lemma 2, we can conclude

$$\mathfrak{D}(T_1^*) \otimes \mathfrak{D}(T_2^*)$$

is $\sigma((A_1 \otimes_{\min} A_2)^*, (A_1 \otimes_{\min} A_2))$ -dense in $(A_1 \otimes_{\min} A_2)^*$. Since

$$\mathfrak{P}(T_1^*) \otimes \mathfrak{P}(T_2^*) \subseteq \mathfrak{P}((T_1 \otimes T_2)^*),$$

 $\mathfrak{P}((T_1 \otimes T_2)^*)$ is $\sigma((A_1 \otimes_{\min} A_2)^*, (A_1 \otimes_{\min} A_2))$ -dense in $(A_1 \otimes_{\min} A_2)^*$. By Lemma 1, $T_1 \otimes T_2$ is preclosed in $(A_1 \otimes_{\min} A_2)$. Q.E.D.

COROLLARY 1. Let T_1 , T_2 be bounded operators on A_1 and A_2 , respectively. Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$.

Now we turn to studying tensor products of Banach spaces. We will use the notations in [7].

We assume that E_1 and E_2 denote any two Banach spaces while E_1^* and E_2^* stand for their conjugate spaces, $E_1 \otimes E_2$ and $E_1^* \otimes E_2^*$ denote algebraic tensor products of E_1 , E_2 and E_1^* , E_2^* respectively.

If β is a norm in $E_1 \otimes E_2$, then β induces naturally a norm on $E_1^* \otimes E_2^*$:

$$||f||_{B^*} = \sup\{|\langle x, f \rangle| : x \in E_1 \otimes E_2, ||x||_B \le 1\},$$

in which $f = \sum_{i=1}^{n} f_{1,i} \otimes f_{2,i} \in E_1^* \otimes E_2^*$, where $\langle x, f \rangle$ means, of course, the value

$$\langle x, f \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \langle x_{1,j}, f_{1,i} \rangle \langle x_{2,j}, f_{2,i} \rangle,$$

for each $x = \sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \in E_1 \otimes E_2$.

In the same way, we can define β^{**} .

If $\beta^{**} = \beta$ on $E_1 \otimes E_2$, we call β reflexive.

The completion of $E_1 \otimes E_2$ and $E_1^* \otimes E_2^*$ under β and β^* are denoted by $E_1 \otimes_{\beta} E_2$ and $E_1^* \otimes_{\beta^*} E_2^*$.

We suppose λ is the least norm on $E_1 \otimes E_2$ [7].

THEOREM 2. If β is a reflexive norm on $E_1 \otimes E_2$, $\beta \ge \lambda$ and T_1 , T_2 are densely defined preclosed operators on E_1 and E_2 respectively, then $T_1 \otimes T_2$ is preclosed on $E_1 \otimes_{\beta} E_2$.

PROOF. As T_1 and T_2 are preclosed, by Lemma 1, $\mathfrak{D}(T_1^*)$ is $\sigma(E_1^*, E_1)$ -dense in E_1^* and $\mathfrak{D}(T_2^*)$ is $\sigma(E_2^*, E_2)$ -dense in E_2^* respectively.

Now we prove $E_1^* \otimes_{\beta^*} E_2^*$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, (E_1 \otimes_{\beta} E_2))$ -dense in $(E_1 \otimes_{\beta} E_2)^*$. Equivalently, we have to prove $E_1^* \otimes_{\beta^*} E_2^*$ is total in $(E_1 \otimes_{\beta} E_2)^*$.

Since $\beta \ge \lambda$, from [4] $E_1^* \otimes E_2^* \subseteq (E_1 \otimes_{\beta} E_2)^*$ and $E_1^* \otimes_{\beta^*} E_2^* \subseteq (E_1 \otimes_{\beta} E_2)^*$. As β is reflexive, by Lemma 4.1 of [5], $(E_1 \otimes_{\beta} E_2) \subseteq (E_1^* \otimes_{\beta^{**}} E_2^*)$.

Let x be an element in $E_1 \otimes_{\beta} E_2$ such that f(x) = 0 for all $f \in E_1^* \otimes_{\beta^*} E_2^*$.

By continuity of β^* and definition, $\beta^{**}(x)$ is the least positive number for which $|f(x)| \leq C\beta^*(f)$, for all $f \in E_1^* \otimes_{\beta^*} E_2^*$.

Therefore, $\beta^{**}(x) = 0$.

According to assumption, $\beta(x) = \beta^{**}(x) = 0$ and x = 0.

Hence, $E_1^* \otimes E_2^*$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, (E_1 \otimes_{\beta} E_2))$ -dense in $(E_1 \otimes_{\beta} E_2)^*$. Therefore, $\mathfrak{D}(T_1^*) \otimes \mathfrak{D}(T_2^*)$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, E_1 \otimes_{\beta} E_2)$ -dense in $(E_1 \otimes_{\beta} E_2)^*$. Since

$$\mathfrak{I}(T_1^*) \otimes \mathfrak{I}(T_2^*) \subseteq \mathfrak{I}((T_1 \otimes T_2)^*),$$

 $\mathfrak{I}((T_1 \otimes T_2)^*)$ is $\sigma((E_1 \otimes_{\beta} E_2)^*, (E_1 \otimes_{\beta} E_2))$ -dense in $(E_1 \otimes_{\beta} E_2)^*$.

By Lemma 1, $T_1 \otimes T_2$ is preclosed. Q.E.D.

Now we prove that the injective C^* -cross norm is reflexive. Using this property, we can give another proof of Theorem 1.

THEOREM 3. If A_1 and A_2 are C^* -algebras, the injective C^* -cross norm on the algebraic tensor product $A_1 \otimes A_2$ is reflexive.

PROOF. Let

$$A = A_1 \otimes_{\alpha} A_2, \qquad V = A_1^* \otimes_{\alpha^*} A_2^*.$$

 S_{α^*} , S_{α} denote the unit ball of V, A respectively, that is,

$$S_{\alpha^*} = \{ \omega \mid ||\omega||_{\alpha^*} \leq 1, \omega \in V \},$$

$$S_{\alpha} = \{ a \mid ||a||_{\alpha} \leq 1, a \in A \}.$$

We further set

$$\langle x, \omega a \rangle = \langle ax, \omega \rangle, \quad \langle x, a\omega \rangle = \langle xa, \omega \rangle.$$

Since $\|a\omega\|_{\alpha^*} \leq \|a\|_{\alpha} \|\omega\|_{\alpha^*}$ for $a \in A_1 \otimes_{\alpha} A_2$ and $\omega \in V$, V is invariant under A. That is, if $\omega \in V$, then $\omega a \in V$, $a\omega \in V$ for all $a \in A$.

For $a \in A$, we define $|||a||| = \sup\{||a\omega||_{\alpha^*}: \omega \in V, ||\omega||_{\alpha^*} \le 1\}$. It is easy to verify

$$\begin{aligned} \||a + b|\| &\leq \||a|\| + \||b|\|, & \||ab|\| &\leq \||a|| \, \||b||, \\ \||\lambda a|\| &= |\lambda| \, ||a||, & ||a|| &\leq ||a||_{\alpha} & \text{for } a, b \in A. \end{aligned}$$

According to the minimal property of the norm [1], we have

$$\begin{aligned} \|a\| &= \|a\|_{\alpha}. \\ \|a\|_{\alpha} &= \operatorname{Sup}\{\|a\omega\|_{\alpha^{*}} : \omega \in S_{\alpha^{*}}\} \\ &= \operatorname{Sup}\{|\langle b, a\omega\rangle| : b \in S_{\alpha}, \omega \in S_{\alpha^{*}}\} \\ &= \operatorname{Sup}\{|\langle ba, \omega\rangle| : b \in S_{\alpha}, \omega \in S_{\alpha^{*}}\} \\ &= \operatorname{Sup}\{|\langle a, \omega b\rangle| : b \in S_{\alpha}, \omega \in S_{\alpha^{*}}\} \\ &\leq \operatorname{Sup}\{|\langle a, \omega\rangle| : \omega \in S_{\alpha^{*}}\} \leq \|a\|_{\alpha}. \end{aligned}$$

Therefore, $||a||_{\alpha} = ||a||_{\alpha^{**}}$. Q.E.D.

COROLLARY 2. Let A_1 and A_2 be C^* -algebras and T_1 and T_2 be densely defined preclosed operators on A_1 and A_2 . Then $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$.

PROOF. Since $\|\cdot\|_{\min}$ is reflexive and $\lambda \leq \|\cdot\|_{\min}$, by Theorem 2, $T_1 \otimes T_2$ is preclosed on $A_1 \otimes_{\min} A_2$. Q.E.D.

In fact, Corollary 2 gives another proof of Theorem 1.

I would like to express my sincere gratitude to Professor M. Takesaki for his encouragement and several very useful discussions.

REFERENCES

- 1. F. Bonsall, A minimal property of the norm in some Banach algebra, J. London. Math. Soc. 29 (1954), 156–164.
 - 2. T. Okayasu, On the tensor products of C*-algebra, Tôhoku Math. J. 18 (1966), 325-331.
 - 3. _____, Some cross norms which are not uniformly cross, Proc. Japan. Acad. 45 (1970), 54-57.
- 4. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950.
 - 5. _____, On reflexive norms for the direct product, Trans. Amer. Math. Soc. 54 (1943), 498–506.
- 6. M. Takesaki, On the cross-norm of the direct product of C*-algebra, Tôhoku Math. J. 16 (1964), 111-122.
 - 7. _____, Theory of operator algebras. I, Springer-Verlag, New York, 1979.
 - 8. T. Turumaru, On the direct product of operator algebra. I, Tôhoku Math. J. 4 (1952), 242-251.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China