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COEFFICIENTS AND INTEGRAL MEANS

OF SOME CLASSES OF ANALYTIC FUNCTIONS

T. SHEIL-SMALL

Abstract. The sharp coefficient bounds for the classes Vk of functions of bounded

boundary rotation are obtained by a short and elementary argument. Elementary

methods are also applied for the coefficients of related classes characterised by a

generalised Kaplan condition. The result (1 + xz)a(\ - z)'ß « (1 + z)a(\ - z)'^

(| x |= 1, a 3* 1, ß 3s 1) is proved simply. It is further shown that the functions

(1 + z)"(l — z)~P are extremal for the/>th means (p an arbitrary real) of all Kaplan

classes K(a, ß).

1. The Kaplan classes. A function f(z) — 1 + axz + a2z2 + ■ ■ ■   analytic and

nonzero in | z \< 1 is said to belong to the Kaplan class K(a, ß) (a > 0, ß 2* 0) if for

0 < r < 1 and 0, < 02 < 6X + 2tt we have

o       -«f-^BF-it«"-»**'»'-re'ef'{rei0) _ 1

■>,, P     f(re")

Notice that each of these inequalities implies the other. This definition includes

several well-known classes.

(i) g(z) = z + _axz2 + ■ • ■ is close-to-convex of order a iff g' G K(a, a + 2).

(ii)f G K(a, a) iff for a suitable real p,

(2) |arg(^/(z))|<«V2        (M< 1).

(iii) g(z) = z + ■ ■ ■ is starlike of order X < 1 iff g(z)/z E K(0,2(1 - X)).

An alternative definition can be formulated as follows. For X real we write

K(X,0)      (A 3=0),

*(0,-A)     (\<0),
(3) nx

or, equivalently, / G nA iff for | z \ < 1,

(4) Re5LMi<^     (A>°)'
(4) Ref(z)\>_X    (A<0).

The class no = K(0,0) consists of the single function/(z) = 1. We then have

Theorem A [10]. / G K(a, ß) iff we can write f(z) = g(z)H(z), where g E Ua_ß,

| arg(el,lH) \ < \tt min(a, ß) for a suitable real p.

Received by the editors June 10, 1981.

1980 Mathematics Subject Classification. Primary 30C50, 03C75.
Key words and phrases. Functions of bounded boundary rotation, starlike functions, close-to-convex

functions.

©1983 American Mathematical Society

0002-9939/82/0000-1179/S02.50

275



276 T. sheil-small

Theorem B. (a) 0 < a' < a, 0 « ß' < ß => £"(«'. /?') C #(«, 0).

(b)/£tf(a,j8)*»l//£#(&<*).
(c)fEK(a,ß) <=* for each p>0,fp EK(pa, pß).

(d) f E K(a, ß), g G K(a', ß') - fg E K(a + a',ß + ß').

The functions in II x are characterized by the representation

(5) /(z) = expJx/^ogO +e¡'z)dp(t)\

for a suitable probability measure on the unit circle T. This gives as a dense subclass

the A-products

(6) f(z)= n (\ + xkz)K

where |jc¿|<1, sign Àk = sign A, 2"A¿ = A. Of special interest are the classes

S(a, ß), where a s* 0, /? > 0, consisting of functions of the form

(7) f(z)=g(z)/h(z)

where g G na, h E Ylß. From Theorem B we see that

(8) S(a,ß)CK(a,ß),

and if a > 0, ß > 0, this containment is strict. It is well known that a function

g(z) — z + axz2 + • ■ - has bounded boundary rotation not exceeding k-rr (the class

Vk where k > 2) iff g' G S(-2k — \,{-k + 1). In particular, such functions g are

close-to-convex of order \k — 1 [41.

2. The coefficient problem. The sharp bounds for the coefficients of functions in

Vk were obtained over two substantial papers [1,4]. The first of these [4] reduced the

problem by means of some ingenious extreme point arguments to estimating the

coefficients of the special functions (1 + xz)a(\ — z)~a, where |x\— 1, a> \. The

estimate

was obtained with some difficulty in [1] and established the conclusion

(io) /(z)«(i + z)7o-*r+2

for/ G K(a, a + 2) (a > 0). Later Brannan [3] simplified the proof of (9) and some

similar results, but considerable ingenuity was still required. Even deeper convolu-

tion methods, as well as Brannan's results were required to show that

(11) f(z)«{\+z)"/(\-zf

for / G K(a, ß) (a > 1, ß > 1) [9,10]. There is a gap in these results. It is still true

that (11) holds when 0 < a < 1, ß > 2 — a. The proof is completely elementary.

Theorem 1. /// G K(a, ß), where 0<a<l,ß>2-a, then

(12) /(z)«(l +z)V(l -z/.
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Proof. We can write/ = g£ where g G n,^, £ G K(a, a). Then

f(z) = (£(z)g(z)(^1)/^-a)g(-z)(a-|)/(^a,)(g(z)g(-z))(1-a)/^-a).

Now g(z)i<3-])^ß'a) E K(0, ß - I) and g(-z)ia-]W-a) EK(\ - a, 0). Hence

£(z)g(z)(/3-,)/(/?-a)g(^)<a"1)/('"Q> EK(l,a + ß-l)

and so can be written in the form Hp, where H G A^(l, 1) and p E n2_a_^.

Standard estimates give H(z) « (1 + z)(l - ¿)~\p{z) « (1 - z)2-"^. Thus

(13) //(zV(z)«(l+z)/(l-z)a+/?-'.

Secondly,

(g(z)g(-z))('-Q)/<^tt) = ^(z2),

where k(z) G na^,, which implies

(i4) k(z2)«(\-z2y-\

From (13) and (14) we obtain

(15) /,2)*^r^,1--!r, = ïï±ff

The solution of the Vk problem is an immediate consequence:

Corollary. /// G K(a, ß), where ß — a > 2(1 - {a}), then (12) holds. In particu-

lar, (10) holds.

Proof. If m = [a] + 1 = a + 1 — {a}, we apply the theorem to fx/m E

K(a/m,ß/m).

With the help of Theorem 1 we obtain a simple proof of the result of Aharonov

and Friedland [1]; also see Brannan [3].

Theorem 2. For a > 1, ß > 1 we have

(16) (\+xz)a/(\-zf«(\+zr/(\-zf       (|*|<1).

Proof. Since (1 +xz)m«(l + z)m for any nonnegative integer m, we may

assume that 1 < a < 2, ß = 1. Put a — 1 + y and consider

g(z) = (i + xz)i+^i-zr'.

Differentiating gives

,.   . _    (1 + jcz)v   1 + (y + \)x - yxz

g(z)"(i-z)2-     (i-zr    "

By Theorem 1,

(i+*z)7(i-z)2-y«(i+z)7(i-zrY.

It remains to prove

(17) (1 + (y + \)x - yxz)/ (1 - z)y « (2 + y - yz)/ (1 - z)\
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with the right-hand expression having nonnegative coefficients. The left-hand ex-

pression is clearly « 1/(1 - z)y + (y + 1 — yz)/(\ — z)y providing that the second

term has nonnegative coefficients, which will also show that the right-hand expres-

sion in (17) has nonnegative coefficients. The proof is completed by observing that

1 — yz

d*l(l -z)y

y(i - y)z

(1-2)
y+1

has nonnegative coefficients for 0 < y < 1.

Remark 1. Although, as we have shown, the coefficient problem for Vk can be

solved by elementary methods, nevertheless the extreme point methods introduced in

[4] seem to be essential for proving (11) in the general case. In view of Theorem 1 it

remains an interesting open problem as to whether the functions (1 + xz)"(l — yz)'ß

(| x | = | y | = 1) represent the extreme points of K(a, ß) for 0 < a < 1, ß > 2 — «.

The coefficient problem for the remaining values of the parameters a and ß

presents a number of difficulties. In general the function (1 + z)a(l — z)~ß is no

longer extremal. The case ß — a is easily dealt with.

Theorem 3. /// G K(a, a) where 0 < a < 1, then

(18) |a„|<2a        (n = 1,2,...).

This is sharp for f(z) = (1 + z")a(l - z"ya.

Proof. Since fx/a E K(l, 1), we can write

1 + xu(z)
f(z) <

1 + xz

1 -z

(«= 1,2,...).

l-u(z)

where \x\= 1. Since for 0 < a < 1 the function z

convex univalent, we deduce

|a„|<a| 1 +x|<2a

For the case ß — 0 we have

Theorem 4. Iff E Ua where a > 0, then

09) |«.|<(î)        (l-

(20) \am\<J(a)/n       (« > [a/2] + 1)

where

(1 + xz)a(\ - z)-a(x¥= -1) is

«

2
+ 1

)•

(21) '«■H[!HU1 + 1)-[a/2] + 1

In particular, (1 + z)a is extremal for the first [a/2] + 1 coefficients. Note also

that (1 + z")a/" G ITa, so we cannot do better than a/n for the nth coefficient.

Proof. Since Re(z/'(z)//(z)) < {-a, we can write

zf'(z)/f(z) = au(z)/ (1 + u(z)),
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where u(0) = 0, I u(z) |< 1. We deduce that

2 (k+l)ak+xz>
k=0

2 (k-a)akz'
k = 0

As shown by Clunie [5] this inequality implies

2 (*+i> i
k=0

2 ' I2
2 (k- otf\ak

k = 0

(kl<i).

(« = 0,1,2,...).

Hence

(«+1)2K+.|2<   S («2-2«A:)|aA
A: = 0

Now equality occurs here when u(z) = z,f(z) — (1 + z)a; hence

(«+l)2(„ï1)   =   1 (a2-2ak)(l).
k = 0

Since a0 = 1, we obtain in the case n = 0, \ax [< a. Suppose n < ¿a and assume we

have shown that [a* IM*) 0 < * * »)■ Then

(« + l)21 an+x |2 <   2 («2 - 2ak)( if = (« + 1)2( ̂  , )2,

so  a

k = 0

! |< („+,)■ By induction this holds up to n = [a/2]. If n > [a/2], then

I«/2] a/2]

(«+i)2K+,|2< 2 («2-2«rc)|a,|2< 2 («2-2«*)(;*) =72(«)
A: = 0 fc = 0

and we obtain (20).

Remark 2. For 0 < a < 2 this gives the sharp result

|aj<«//i        («=1,2,...)

obtained by Clunie [5] and Pommerenke [8] in the context of meromorphic starlike

functions. It seems unlikely that the J(a) estimate is sharp when a > 2. A tentative

conjecture is that

O      (!<«<[«]),
a/n     (n > [a]).

Remark 3. Although (1 + z)a(l — z)~ß is not extremal for the coefficients for

every value of a and ß, we conjecture that the weaker Rogosinski dominance holds:

Zi I ak I
k=\

2 A\       («=1,2,...)
k=\

for f(z) = 1 + 2Tanz" G K(a, ß), where An = An(a, ß) are the coefficients of

(1 + z)a(l - z)~ß. This is true for n„ (a > 0) by subordination: if / G na, then

f(z) < (1 + z)°. If this conjecture is true, it implies that for every a and ß, the

function (1 + z)a(l — z)~ß is extremal for the pth integral means of / G K(a, ß)

( p > 0). We prove this result in the next section.
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3. Integral means.

Theorem 5. If f(z) E K(a, ß), then for each convex function <£> on (-oo, oo), we

have, for 0 < r < 1,

(22) f*(iog !/(«'■») i) de < f*(iog | *„,„(«") |) de

where kaJ(z) = (\+z)a(\-z)-ß.

We follow a method similar to the argument of Leung [7], who dealt with the

close-to-convex case a = 1, ß = 3, making use of Baernstein's star function [2]. The

proof is elementary in that no use is made of Baernstein's fundamental result that u*

is subharmonic when u is. Instead we require four observations concerning the star

function.

Lemma 1. (a) // u(z) is subharmonic in |z|< 1 and if u(z) is analytic with

w(0) = 0, |w(z)|< I, then:

(23) {u{u(re,e)))* < (u(rei6))*       (0 <r < 1, 0 «0 <ir);

(b) ifu andv E Lx(-tt, tt), then

(24) (u + v)* <u* + v*;

(c) if u and v are even on [-tt, tt] and nondecreasing on \-tt, 0], then

(25) u* + v* = (u + v)*;

(d) suppose that u and v G Lx(-tt, tt) and

(26) fu(t)dt = ív(t)dt,

(27) u*(6)<v*(0)       (O^e^Tr);

Then for every convex function $ on (-oo, oo),

(28) [\(u(t))dt<r^(v(t))dt.

Conversely, (28) implies both (26) and (27).

Proof, (a) follows on an application of Riesz's subordination inequality [6, p. 11].

(b) is trivial, (c) follows from the observation that w*(6) = f% w(t)dt (0 < 9 « w)

for w(6) even on [-w, tt] and nondecreasing on [-tt, 0]. To prove (d) we recall that

(27) implies (28) for every nondecreasing convex $ on (-00,00). Now it can be

shown (exercise) that every convex function on (-00, 00) can be decomposed into the

sum of a nondecreasing convex function on (-00, 00) with a nonincreasing convex

function on (-00, 00). Therefore we need to show that (28) holds for every nonin-

creasing convex $ on (-00, 00). But then $(-x) is nondecreasing convex and so we

require

(29) (-u)*(e)^(-v)*(e)       (0^0 ^tt).
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Writing / = [-tt, tt] we have

(-«)*(#) =   sup   [(-u(t)dt    =   sup   \-fu(t)dt-sr f    u(t)dt)
\E\ = 20\JE I \E\ = 28\      -it JI-E I

= - f u{t) dt + u*(tt - d) ̂  - f v(t) dt + v*(tt - 0) = (-v)*(6).
-77 **-77

Conversely, (28) implies (27) [2] and (28) implies (26) by taking $(x) = x and

<fr(x) = -x.

Lemma 2. /// G K(a, ß) we can write

(30) f(z) = (\+ux(z))a/(\-u2(z))ß       (|z|<l),

where u¡ are analytic, co,(0) — 0 and |w,(z)|< 1  (|z|< 1, i = 1,2) (i.e. w, are

Schwarz functions).

Proof. By Theorem A we can write / = gH where g G Ha_ß and H E K(X, A)

(A = min(a, ß)). It is well known that a function h E Tl_2 is subordinate to

(1 + z)~2 and, as g = h{ß~a)/2 for some such « by Theorem B(c), g is sub-

ordinate to (1 + z)a~ß. Also H = Px, where P E K(\, 1), and so is subordinate to

(1 + xz)(\ — z)"' for some x i\x\— 1). Thus we can write, for suitable Schwarz

functions o,y

**>-(£$)(,+*'»'

It only remains to show that if /t > 0, r > 0, then for Schwarz functions r¡,

(1 + t,)^! + r2y is subordinate to (1 + z)M+". Clearly we may assume that ju + v

— 1. The result follows on taking logs, since log(l + z) is convex univalent.

Lemma 3. Suppose that F(z) = 1 + Axz + ■ ■ ■, G(z) = 1 + Bxz + • • • are ana-

lytic and nonzero in \z\< 1, each having real coefficients with Ax > 0, Bx > 0, and

suppose further that the two functions zF'(z)/F(z), zG'(z)/G(z) are typically real in

| z |< 1. Then if f < F,g< G, we have, for every convex function O on (-oo, oo),

(31) f (p{\og\ f(rew)g(reie) |) d6 < f$(log| F(re'e)G(re'e) \) dB.

Proof. By Lemma 1(d) we must prove

(32) (log|/(re/9)g(re/tf) |)* < (log | F(rei9)G(re'e) \)*.

((26) holds since both integrals are zero.) By Lemma 1(a), (b) the left expression is

(33) < (log | F(re,e) |)* + (log | G(re'e) \)*.

Since £ has real coefficients, log | F(re'e)\ is even on [-tt, tt]. Also

3  ,     , w    mm       T    reieF'(reie)
Ydlo_.\F(re«)\=-lm    ^

is nonzero and has constant sign for 0 E (-tt, 0). Fixing 6 this sign remains constant

when r varies (by continuity), and, hence, letting r -» 0, the sign is that of -Ax sin 6,
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i.e. it is  positive.   Thus log|£(re'*)| is   increasing   on   [-7r,0].   Similarly   for

log | G(re'e)\ . We obtain (32) by applying Lemma 1(c) to (33).

Proof of Theorem 5. The result follows from Lemmas 2 and 3 by putting

F(z) = (\-rz)a,G(z) = (l-z)-ß.
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