AN INJECTIVE METRIZATION FOR COLLAPSIBLE POLYHEDRA

JIE-HUA MAI AND YUN TANG

ABSTRACT. In this paper we prove that any finite collapsible polyhedron is injectively metrizable.

A metric space Y is *injective* if every mapping which increases no distance from a subspace of any metric space X to Y can be extended, increasing no distance, over X. Isbell [2] proved that every 2-dimensional collapsible polyhedron admits injective metrics. In this paper we generalize the result to any finite collapsible polyhedron, which answers a part of the problem put forward by Isbell [2, 3].

Let S be a simplicial complex. According to [4], S is called *collapsible* if there is a sequence of increasing subcomplexes S_0, S_1, \ldots, S_n such that $S_0 = a$ point, $S = S_n$ and $S_{i+1} = S_i \cup \{\Delta_i, \tau_i\}$, where Δ_i is an r_i -dimensional simplex with an $(r_i - 1)$ -dimensional face τ_i such that $S_i \cap \{\Delta_i, \tau_i\} = \emptyset$, $i = 0, 1, \ldots, n - 1$. The polyhedron |S| of a (collapsible) complex S is called a (*collapsible*) polyhedron.

Let K be a cubical complex. I = [0, 1], $I^{n+1} = I^n \times I$. Metrize K as follows: assume that each k-cube of K is a copy of I^k ; define the distance between two points $x, y \in |K|$ so that if x and y are in a common cell, for example, in $|I^k|$, then the distance

$$d(x, y) = \max |x_i - y_i|,$$

where $x = (x_1, ..., x_k), y = (y_1, ..., y_k) \in |I^k|$; otherwise the distance is the length of the shortest path joining them. Obviously, K then is a convex metric space.

DEFINITION 1. Let K be a cubical complex, Y a connected subset of |K|. Y is called a *generalized cuboid* of K if for any cell of K, for example, I^k , either the intersection $Y \cap |I^k| = \emptyset$, or there are $s_i, t_i, 0 \le s_i \le t_i \le 1, i = 1, ..., k$, such that

$$Y \cap |I^{k}| = \{(y_{1}, \dots, y_{k}) \in I^{k} | s_{i} \leq y_{i} \leq t_{i}, i = 1, \dots, k\}.$$

For convenience, write GC for generalized cuboid.

DEFINITION 2. Let K be a cubical complex. K is called *collapsible* if there are a sequence of subcomplexes K_0, K_1, \ldots, K_n of K, and nonempty subcomplexes L_i of K_i , $i = 0, 1, \ldots, n$, such that $K_0 =$ one point, $K = K_n$, and $K_{i+1} = K_i \cup L_i \times I$, where

 $L_i \times I = \{c \times \{0\}, c \times I, c \times \{1\} \mid c \in L_i\}, \quad I = [0, 1],$

 $i = 0, 1, \dots, n - 1$. Such K is called *regular* if each $|L_i|$ is a GC of K_i .

Received by the editors March 23, 1982 and, in revised form, April 26, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54E35; Secondary 57A15.

^{©1983} American Mathematical Society 0002-9939/82/0000-0602/\$01.75

REMARK 1. Here for every $c \in L_i$, we always identify c and $c \times \{0\}$. In particular $I^n = I^n \times \{0\} \subset I^{n+1}$.

REMARK 2. Isbell [2] gave a different, rather special definition for collapsible cubical complexes in the 2-dimensional case.

LEMMA 1. Let S be a collapsible simplicial complex. Then S can be subdivided to a regular collapsible cubical complex K such that the polyhedron of any subcomplex of S is exactly the polyhedron of the corresponding subcomplex of K.

PROOF. Let the subcomplexes of S, S_0, S_1, \ldots, S_n , and the simplex Δ_i, τ_i be as above. Set $K_0 = S_0$. Suppose Lemma 1 is true for n = i; we want to show it is true for $S_{i+1} = S = S' \cup \{\Delta_i, \tau_i\}$.

Write $\partial \Delta_i = \Delta_i - \operatorname{Int} \Delta_i$, by the hypothesis of induction, the polyhedron $|S_i|$ is subdivided to a regular collapsible cubical complex M, and $\partial \Delta_i - \operatorname{Int} \tau_i$ is a polyhedron of some subcomplex L of M. Obviously, there exists a homeomorphism fof $(\partial \Delta_i - \operatorname{Int} \tau_i) \times I$ onto Δ_i such that f(x, 0) = x for every $x \in \partial \Delta_i - \operatorname{Int} \tau_i$. By f, one can obtain the cubical subdivision $M' = M \cup L \times I$ of |S'|.

Consider an arrangement $c_1, c_2, ..., c_m$ of all cubes contained in L so that dim $c_i \leq \dim c_{i+1}$, for $1 \leq i \leq m$. Set

$$M_{\alpha} = M \cup \{c_j \times I, c_j \times \{1\} \mid j = 1, 2, \dots, \alpha\}, \qquad \alpha = 0, 1, \dots, m;$$

then $M = M_0 \subset M_1 \subset \cdots \subset M_{m-1} \subset M_m = M \cup L \times I$. Let $Q_\alpha = c_\alpha \times \{0\} \cup \partial c_\alpha \times I$. It is easy to construct a homeomorphism f_α of $|Q_\alpha \times I|$ onto $|c_\alpha \times I|$, $\alpha = 1, 2, \ldots, m$, such that

$$f_{\alpha}(x, t, 0) = \begin{cases} (x, 0) & \text{if } x \in c_{\alpha}, t = 0, \\ (x, t) & \text{if } x \in \partial c_{\alpha}, t \in I. \end{cases}$$

Let $P_0 = M_0$, $P_{\alpha} = P_{\alpha-1} \cup Q_{\alpha} \times I$, $\alpha = 1, ..., m$. By construction each P_{α} is a cubical subdivision of M_{α} , and $|Q_{\alpha}|$ is clearly a GC of $P_{\alpha-1}$. So $M \subset P_1 \subset P_2 \subset \cdots \subset P_m$ is a subsequence of regular cubical complexes. Since $|P_m| \approx |M_m| \approx |S_{i+1}|$, P_m is as desired. \Box

To study injective metrization we give some properties of GC.

LEMMA 2. Suppose L is a subcomplex of a cubical complex K, |L| is GC in K, and projection

$$P: |K| \cup |L \times I| \rightarrow |K|$$

is given by p(x) = x for $x \in |K|$ and p(y, t) = y for $(y, t) \in |L| \times I$. Let $K' = K \cup L \times I$. If X is a GC of K', then

(i) p(X) is a GC of K;

(ii) if $p(X) \cap |L| = \emptyset$, X = p(X);

(iii) if $p(X) \cap |L| \neq \emptyset$ and $X \cap |K| = \emptyset$, then there are $s_0, t_0 \in I, s_0 \leq t_0$, such that $X = p(X) \times [s_0, t_0]$;

(iv) if $p(X) \cap |L| \neq \emptyset$ and $X \cap |K| \neq \emptyset$, i.e. $X \cap |L| \neq \emptyset$, then there is $t_0 \in I$ such that $X = (X \cap |K|) \cup ((p(X) \cap |L|) \times [0, t_0])$. **PROOF.** (i) If $|K| \cap X \neq \emptyset$, it is easy to see that $p(X) = |K| \cap X$ is a GC of K. If $|K| \cap X = \emptyset$, $p(X) \subset |L|$ and hence p(X) is a GC of L. Since |L| is a GC of K, so is p(X).

(ii) If $p(X) \cap |L| = \emptyset$, $X \subset |K|$ and hence X = p(X).

(iii) and (iv) follow easily from $X = (X \cap |K|) \cup (X \cap |L \times I|)$ and the following

CLAIM. If $p(X) \cap |L| \neq \emptyset$, then there are $s_0, t_0 \in I$ such that

$$K \cap (L \times I) = (p(X) \cap |L|) \times [s_0, t_0].$$

It suffices to show that if (x, s) and (y, t) in $|L| \times I$ are points in X, then (y, s) is also a point in X. In fact, take a broken line in X

$$[(x_0, s_0), (x_1, s_1), \dots, (x_n, s_n)]$$

such that $(x, s) = (x_0, s_0)$, $(y, t) = (x_n, s_n)$, and $[(x_{i-1}, s_{i-1}), (x_i, s_i)]$ belong to a common cube, i = 1, ..., n. It successively follows from $(x_0, s_0) \in X$ that $(x, s_0), ..., (x_{n-1}, s_0), (x_n, s_0) = (y, s)$ are in X. \Box

For $r \ge 0$, nonempty subsets Y of |K| and X of |K'|, write

$$B(Y, r) = \{ y \in |K| \mid d(y, Y) \leq r \},\$$

$$B'(X, r) = \{ x \in |K'| \mid d(x, X) \leq r \}.$$

LEMMA 3. Let K and L be as in Lemma 2. Suppose that for every GC of K, Y, and $s \ge 0$, B(Y, s) is a GC of K. Then for every GC of $K' = K \cup (L \times I)$, X, and $r \ge 0$, B'(X, r) is a GC of K'.

PROOF. Let X be a GC of K'. The proof conveniently splits into two cases: Case 1. $X \cap |L| \neq \emptyset$. By (iv) of Lemma 2, there is $t_0 \in I$ such that

$$X = (X \cap |K|) \cup ((p(X) \cap |L|) \times [0, t_0]).$$

Let $B_1 = B'(X \cap |K|, r), B_2 = B'((p(X) \cap |L|) \times [0, t_0], r)$, it is easy to see $B'(X, r) = B_1 \cup B_2$

$$= (B_1 \cap |K|) \cup (B_1 \cap |L \times I|) \cup (B_2 \cap |K|) \cup (B_2 \cap |L \times I|).$$

It is obvious that

$$B_{1} \cap |L \times I| \subset B_{2} \cap |L \times I|, \quad B_{2} \cap |K| \subset B_{1} \cap |K|,$$
$$B_{1} \cap |K| = B(X \cap |K|, r),$$

and

$$B_2 \cap |L \times I| = (B(p(X), r) \cap |L|) \times [0, t_1],$$

where $t_1 = \min\{t_0 + r, 1\}$. Then $B'(X, r) = B(X \cap |K|, r) \cup ((B(p(X), r) \cap |L|) \times [0, t_1])$. Since $X \cap |K|$, p(X) and |L| are GC of K, by the hypothesis, $B(X \cap |K|, r)$ and $B(p(X), r) \cap |L|$ are GC of K. So B'(X, r) is a GC of K. The proof of Case 1 is complete.

Case 2. $X \cap |L| = \emptyset$. Let $r_0 = d(X, |L|)$. One has

$$B'(X, r) = B'(B'(X, r_0), r - r_0) \text{ whenever } r_0 \leq r.$$

Case 2(a). $X \cap |K| = \emptyset$. By (iii) of Lemma 2, there are $s_0, t_0 \in I$ such that $X = p(X) \times [s_0, t_0]$. If $r_0 \leq r$, let $t_2 = \min\{1, t_0 + r_0\}$. Since $B(p(X), r_0)$ is a GC of K, $B'(X, r_0) = (B(p(X), r_0) \cap |L|) \times [0, t_2]$ is a GC of K. Now $B'(X, r_0) \cap |L| \neq \emptyset$, by Case 1, B'(X, r) is a GC of K'. If $r_0 > r$, similarly,

$$B'(X,r) = (B(p(X),r) \cap |L|) \times [s_0 - r, t_1]$$

is a GC of K'.

Case 2(b). $X \cap |K| \neq \emptyset$, then $X \subset |K|$. If $r_0 \leq r$, $B'(X, r_0) = B(X, r_0)$ has nonempty intersection with |L|. By Case 1, B'(X, r) is a GC of K'. If $r_0 > r$, B'(X, r) = B(X, r) is a GC of K'. \Box

Let K be a cubical complex. K is said to have property (P) if any collection of GC of K, $\{X_{\alpha} \mid \alpha \in A\}$, such that every couple of its members intersect, has a common point.

LEMMA 4. Let K and L be as in Lemma 2. If K has the property (P), then $K' = K \cup L \times I$ also has the property (P).

PROOF. Let $\{X_{\alpha} \mid \alpha \in A\}$ be a collection of GC of K' such that for each α and β in $A, X_{\alpha} \cap X_{\beta} \neq \emptyset$. Then $\{p(X_{\alpha})\}$ pairwise intersect in |K|, and hence $\bigcap_{\alpha} p(X_{\alpha}) \neq \emptyset$. We want to show $\bigcap_{\alpha \in A} X_{\alpha} \neq \emptyset$.

If $X_{\alpha} \cap |K| \neq \emptyset$ for each $\alpha \in A$, then

$$\left(\bigcap_{\alpha} X_{\alpha}\right) \cap |K| = \bigcap_{\alpha} (X_{\alpha} \cap |K|) = \bigcap_{\alpha} p(X_{\alpha}) \neq \emptyset.$$

Hence $\bigcap_{\alpha} X_{\alpha} \neq \emptyset$.

If $X_{\alpha_0} \cap |K| = \emptyset$ for some $\alpha_0 \in A$, then $X_{\alpha_0} \subset |L| \times I$, and $p(X_{\alpha}) \cap |L| \neq \emptyset$ for each $\alpha \in A$. By (iii) and (iv) of Lemma 3, for each $\alpha \in A$, there are s_{α} , t_{α} such that $0 \leq s_{\alpha} \leq t_{\alpha} \leq 1$ and

$$X_{\alpha} = (X_{\alpha} \cap |K|) \cup ((p(X_{\alpha}) \cap |L|) \times [s_{\alpha}, t_{\alpha}]).$$

Set $s = \sup\{s_{\alpha} \mid \alpha \in A\}$, $t = \inf\{t_{\alpha} \mid \alpha \in A\}$. One has $s \leq t$. In fact, if not, there are $\alpha_1, \alpha_2 \in A$ such that $s_{\alpha_1} > t_{\alpha_2} \ge 0$. Then $X_{\alpha_1} \cap |K| = \emptyset$. Obviously $X_{\alpha_1} = (p(X_{\alpha_1}) \cap |L|) \times [s_{\alpha_1}, t_{\alpha_1}]$ does not intersect with $X_{\alpha_2} = (X_{\alpha_2} \cap |K|) \cup ((p(X_{\alpha_2}) \cap |L|) \times [s_{\alpha_2}, t_{\alpha_2}])$. Contradiction. Then $\bigcap_{\alpha} X_{\alpha} = (\bigcap_{\alpha} p(X_{\alpha})) \times [s, t] \neq \emptyset$. \Box

We have to use an important property of injective metric spaces. That is

LEMMA 5. Let X be a metric space. Then X is injective if and only if X is convex and any collection of solid spheres in pairwise intersection in X has a common point.

For proof of Lemma 5 see [1].

Now we can obtain our main conclusion.

THEOREM. Let S be a finite collapsible simplicial complex. Then there is a distance function in S such that S becomes an injective metric space.

PROOF. By Lemma 1, S can be subdivided to a regular collapsible cubical complex K with its natural metric. Let the sequence of subcomplexes of K,

$$K_0 \subset K_1 \subset \cdots \subset K_n = K$$
,

and $L_i \subset K_i$, i = 0, 1, ..., n, be as in Definition 2. Because |K| is convex, using Lemma 5, we need only show that every solid sphere in |K|, $B(x, r) = \{y \in |K| | d(x, y) \le r\}$ is a GC of K, and that K has the property (P).

The proof will be by induction on *n*. If n = 0, $K_0 =$ one point, it holds obviously. Suppose it holds for $n = j \ge 0$. Then the correctness for $K_{j+1} = K = K' \cup L_j \times I$ easily follows from Lemma 3 and Lemma 4. \Box

The authors are indebted to Professor J. R. Isbell for guidance.

BIBLIOGRAPHY

1. N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439; correction, ibid. 7 (1957), 1729.

2. J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65-76.

3. _____, s admits an injective metric, Proc. Amer. Math. Soc. 28 (1971), 259-261.

4. J. R. Stallings, *Lectures on polyhedral topology*, Tata Institute of Fundamental Research, Bombay, 1967.

DEPARTMENT OF MATHEMATICS, GUANGXI UNIVERSITY, NANNING, CHINA

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK 14214