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AN INJECTIVE METRIZATION FOR COLLAPSIBLE POLYHEDRA

JIE-HUA MAI AND YUN TANG

Abstract. In this paper we prove that any finite collapsible polyhedron is injectively

metrizable.

A metric space Y is infective if every mapping which increases no distance from a

subspace of any metric space X to Y can be extended, increasing no distance, over X.

Isbell [2] proved that every 2-dimensional collapsible polyhedron admits injective

metrics. In this paper we generalize the result to any finite collapsible polyhedron,

which answers a part of the problem put forward by Isbell [2, 3].

Let S be a simplicial complex. According to [4], S is called collapsible if there is a

sequence of increasing subcomplexes S0, SX,...,S„ such that S0 = a point, S = Sn

and S/+| = 5, U (A,, t,}, where A, is an /-,-dimensional simplex with an (r, — 1)-

dimensional face t, such that S¡ n {A,, t¿ } = 0, i — ' ô, t,. "..,« — 1. The polyhedron

I SI of a (collapsible) complex S is called a (collapsible)polyhedron.

Let A: be a cubical complex. / = [0,1], I"+x = I" X I. Metrize K as follows:

assume that each /c-cube of A' is a copy of /*; define the distance between two points

x, y E | K | so that if x and y are in a common cell, for example, in | /* | , then the

distance

d(x, y) = max|x, -y,\

where x = (xx,.. .,xk),y = (yx,.. .,yk) E \Ik \; otherwise the distance is the length

of the shortest path joining them. Obviously, K then is a convex metric space.

Definition 1. Let A' be a cubical complex, Y a connected subset of | K\ . Y is

called a generalized cuboid of K if for any cell of K, for example, /*, either the

intersection Y n | /* | = 0, or there ares¡, tit0><:si<ti< 1, i = l,...,k, such that

rn|/*|= {(yx,...,yk)Elk\s,^y,^t„i=\,...,k}.

For convenience, write GC for generalized cuboid.

Definition 2. Let Ä' be a cubical complex. K is called collapsible if there are a

sequence of subcomplexes KQ, Kx,...,Kn of K, and nonempty subcomplexes L, of

K,, i = 0,1,... ,n, such that K0 = one point, K = Kn, and Ki+X = K¡ U Li X I,

where

L¡ X 1= (cX (0},cX7, cX (1} \cELt},       t= [0,1],

i = 0,1,... ,n — 1. Such K is called regular if each | L, | is a GC of K¡.
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Remark 1. Here for every c G L¡, we always identify c and c X (0). In particular

/" = /'< x {0} Eln+].

Remark 2. Isbell [2] gave a different, rather special definition for collapsible

cubical complexes in the 2-dimensional case.

Lemma 1. Let S be a collapsible simplicial complex. Then S can be subdivided to a

regular collapsible cubical complex K such that the polyhedron of any subcomplex of S

is exactly the polyhedron of the corresponding subcomplex of K.

Proof. Let the subcomplexes of S, S0, Sx,...,Sn, and the simplex A,, t, be as

above. Set K0 — S0. Suppose Lemma 1 is true for n = /'; we want to show it is true

forS,+1 = S = S'U{A„T,}.

Write 3A, = A, — Int A,, by the hypothesis of induction, the polyhedron | S¡ | is

subdivided to a regular collapsible cubical complex M, and 3A, — Int t, is a

polyhedron of some subcomplex L of M. Obviously, there exists a homeomorphism/

of (9A, - Int t,) X / onto A¿ such that/(x,0) = x for every x E 8A, - Int t¡. By/,

one can obtain the cubical subdivision M' = M U L X I of | S' \ .

Consider an arrangement c^c^.. .,cm of all cubes contained in L so that

dim c, =£ dim c,, ,, for 1 < ii < m. Set

Ma = M sj [cjX I, CjX [\}\j= 1,2,...,a],        a = 0, \,...,m;

then M = M0 C M, C • • • C Mm_ xEMm = M U LXI. Let Qa = ca X (0} U

dca X I. It is easy to construct a homeomorphism fa of | Qa X /1 onto \caX I \ ,

a — 1,2,... ,m, such that

{(x,0)    ifx Eca,t = 0,
fa(x,t,0) th i:

[(x, t)    if x E óca,t E I.

Let P0 — M0, Pa — Pa_x U Qa X I, a = \,...,m. By construction each Pa is a

cubical subdivision of Ma, and \Qa\ is clearly a GC of Pa_x. So M C Px E P2 E

• • • C Pm is a subsequence of regular cubical complexes. Since | Pm \ ̂  | Mm \ <=* \ Si+, | ,

Pm is as desired.    D

To study injective metrization we give some properties of GC.

Lemma 2. Suppose L is a subcomplex of a cubical complex K, \ L \ is GC in K, and

projection

P:\K\ U\LX I\^\K\

is given by p(x) = x for x E\K\ andp(y, t) =yfor(y, t) E\L\ XI. Let K' = K U

LXI. IfXis a GC ofK', then

(i)p(X) is a GC of K;

(ii) if p(X)n \L\= 0,X = p(X);
(iii) ifp( X) n | L I ¥= 0 and X D\K\= 0, then there are s0, t0 E I, s0^t0, such

thatX = p(X)X [s0,t0];

(iv) ifp( X) n | L I ̂  0 and X D \ K \ ¥* 0, i.e. XD\L\^ 0, then there is t0 E I

such that X=(Xn\K\)U((p(X)il\L\)X [0, t0]).
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Proof, (i) If | A' | n X ¥= 0, it is easy to see that p( X) - \ K | n X is a GC of K. If

| AT | n X = 0, p( X) C | L | and hence p( X) is a GC of L. Since | L | is a GC of #,

so is/>(A).

(ii)If/>(A) O |L|= 0, AC|/q andhenceA = />(A).

(iii) and (iv) follow easily from X = ( X n | Ä" |) U ( A n | L X 11) and the follow-

ing

Claim. If p( A) n I L | 7e 0, then there are sn, tn G / such that

*n(LX/) = (/>(*)n|L|)x[s0,f0].

It suffices to show that if (x, s) and (j>, r) in | L | X /are points in X, then (y, s) is

also a point in A". In fact, take a broken line in X

[(xQ,sQ),(xx,sx),..., (xn,sn)]

such that (x, s) = (x0, s0), (y, t) = (xn, sn), and [(x, „ s, ■), (x,, s,)] belong to a

common cube, /= 1,...,«. It successively follows from (x0, s0) E X that

(x,s0),...,(x„_x,s0),(xn,s0) = (y,s)areinX.    D

For r > 0, nonempty subsets y of | K | and A of | K' \ , write

B(Y,r)={yE \ K\ \ d(y, Y ) < r),

B'(X,r) = [x E \K'\\d(x,X)*Zr).

Lemma 3. Let K and L be as in Lemma 2. Suppose that for every GC of K, Y, and

s > 0, B(Y, s) is a GC of K. Then for every GC of K' = K U (L X I), X, and r > 0,

B'(X,r)isaGCofK'.

Proof. Let Abe a GC of A". The proof conveniently splits into two cases:

Case 1. A n | L \ ¥= 0. By (iv) of Lemma 2, there is t0 E I such that

x= (An \k\) u {(p(x) n \l\) x [o,t0]).

Let 5, =B'(Xn \K\ ,r),B2 = B'((p(X) n | L |) X [0, r0], r), it is easy to see

B'(X,r) = 5, U B2

= (Bin\K\)sj(B]r)\Lxi\)u(B2r\\K\)i)(B2n\Lxi\).

It is obvious that

B,n|Lx/|c52n|Lx/|,   52 n |/i:|c b, n I A"| ,

bx n \k\= b(x n i a: I, r),

and

Ä2n|LX/|=(5(^(A),r)n|L|)x[0,il],

where r, = min{?0 + /-, 1}. Then £'(A, r) = B(A n | K\ , r) U ((B(p(X), r) n

| L |) X [0, r,]). Since A n | K\ , p(X) and \L\ are GC of AT, by the hypothesis,

B( X n I K\ , r) and B(p(X), r) D | L | are GC of A. So £'( A~, r) is a GC of K. The
proof of Case 1 is complete.

Case 2. A n | L | = 0. Let r0 = d( X, | L \). One has

B'(X, r) = B'(B'(X, r0),r- r0)    whenever r0 < r.
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Case 2(a). A n | A| = 0. By (iii) of Lemma 2, there are s0, tQ E I such that

A = p(X) X [s0, toi If r0 < r, let t2 = min{l, t0 + r0}. Since B(p(X), r0) is a GC

of A, B'(X, r0) = (B(p(X), r0) n |L|) X [0, t2] is a GC of A. Now B'(X, r0) n

| L | * 0, by Case 1, B'( X, r) is a GC of A'. If r0 > r, similarly,

B'(X,r) = (B(p(X),r)n\L\)x[s0-r,tx]

is a GC of A".

Case 2(b). A n | A| ¥= 0, then A E\ A| . If r0 < r, B'(X, r0) = £(A, r0) has

nonempty intersection with \L\ . By Case 1, B'(X, r) is a GC of A'. If r0 > r,

B'(X,r) = B(X,r)isaGCofK'.    D

Let A be a cubical complex. A is said to have property (P) if any collection of GC

of A, {Xa | a G A), such that every couple of its members intersect, has a common

point.

Lemma 4. Let A and L be as in Lemma 2. If A has the property (P), then

A' = A U L X I also has the property (P).

Proof. Let {Xa \ a G A) be a collection of GC of A' such that for each a and ß in

A, Xa n Xß # 0. Then (/KAa)} pairwise intersect in | A| , and hence na/?(Aa) ^

0. We want to show DaeA Aa # 0.

If A„ n | AI # 0 for each a G /I, then

( rua) n|A|= n (Aan|A|)= h/'(aj^0.
a a a

Hence r\aXa¥* 0.

If Aao n | A | = 0 for some a0 E A, then XagE\L\ X I, and p(Xa) n \ L\ ^ 0

for each a G A. By (iii) and (iv) of Lemma 3, for each a E A, there are sa, ta such

that 0 « sa < ta < 1 and

Aa = (Aa n |A|) U ((/7(AJ n |L|) X [sa,ta]).

Set 5 = sup{sa \a E A], t = inf(ra | a G A). One has í < t. In fact, if not, there are

ax,a2EA such that sa¡ > í„2 s= 0. Then Xa¡ D \ K\ = 0. Obviously Aa| = (/>( Aß|)

H | L |) X [iai, iai] does' not intersect with Xai = (Xtt2 D \K\) U ((p(Xa[) D | L |) X

[5„2, iaJ). Contradiction. Then f\Aa = ( Hap(Xa)) X [s, t] * 0.    D

We have to use an important property of injective metric spaces. That is

Lemma 5. Let X be a metric space. Then X is injective if and only if X is convex and

any collection of solid spheres in pairwise intersection in X has a common point.

For proof of Lemma 5 see [1].

Now we can obtain our main conclusion.

Theorem. Let S be a finite collapsible simplicial complex. Then there is a distance

function in S such that S becomes an injective metric space.

Proof. By Lemma 1, S can be subdivided to a regular collapsible cubical complex

A with its natural metric. Let the sequence of subcomplexes of A,

A0 C A, C • • • C An = A,
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and L, C K¡, i = 0,1,... ,n, be as in Definition 2. Because | A| is convex, using

Lemma 5, we need only show that every solid sphere in | A| , B(x, r) — [y E | A|

| d(x, y) =s r) is a GC of A, and that A has the property (P).

The proof will be by induction on n. If n = 0, A0 = one point, it holds obviously.

Suppose it holds for n — j >0. Then the correctness for K+x = A — A' U Lf X I

easily follows from Lemma 3 and Lemma 4.    D

The authors are indebted to Professor J. R. Isbell for guidance.
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