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AN ALGORITHM FOR CHECKING PROPERTY P FOR
KNOTS WITH COMPLEMENTS OF HEEGAARD GENUS 2

R. P. OSBORNE

ABSTRACT. One of the most fundamental questions about knots is: If we know the
topological type of the complement of a knot. is the knot determined? In this paper
we give an algorithm for deciding if certain knots called tunnel number one knots
are determined by their complements. This algorithm turns out to be practical and
efficient in that it can be used on knots with ten crossings without the aid of a
computer and one can expect to be able to handle knots with. say, twenty crossings
with the aid of a desk-top computer.

We give an algorithm for deciding if a knot with a complement of Heegaard genus
two is determined by its complement. This algoithm is efficient enough to be applied
to knots with 10 crossings using about one hour of hand calculation. Knots with
complements of Heegaard genus 2 include torus knots, two bridge knots and many
others such as 8, 8,5, 8,5, 80, 81, %165 9225 Suss 10135, 1045, 10,5, 10,4, from the
knot tables. Knots with Heegaard genus two complements are the *“tunnel number
one knots”. As a consequence of the application of our algorithm the only knots
with 8 or fewer crossings not now known to have property P are 8,4, 8,; and 8,5. 8,
is the only knot with fewer than 9 crossings that is not invertible [Ka]. 8,5 is a
beautifully symmetric knot about which little seems to be known except that it has a
nontrivial second elementary ideal [Fox] so it has a complement of Heegaard genus
3. Perko’s knot 10,5, — 10, is easily shown to have property P by our algorithm.

For an arbitrary knot there is no known algorithm for deciding if it has a
complement of Heegaard genus two. However, we can give a procedure that has
worked for every knot known to have Heegaard genus two complement on which we
have tried it (more than 30 knots).

1. The algorithm. Let (a, b| R,) be a geometric presentation of our knot comple-
ment S> — K. Let m be a geometric presentation of the meridian of K and / a
geometric presentation of the longitude of K. Consider the geometric presentations
{a, b| R,, ml?). Our knot has property P if the group presented is never trivial when
g # 0. To decide if the group presented is trivial we first ask if there is an
automorphism a of F(a, b) that reduces the length of our presentation. This
question can be decided by looking for automorphisms of the form a — b% or
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a—ab® and b - b or of the form a - a and b - a®b or b — ba®, e = =1. If no
automorphism of this form reduces the length of our presentation then no automor-
phism of F(a, b) reduces the length of our presentation. If (a, b|R,, mi?) has
shortest presentation under automorphisms of F(a, b), we check to see if one of the
two relators is a subword of the other. If neither is a subword of the other then the
group presented is not trivial and so the knot has property P.

At this point in theory, the algorithm becomes much more complicated because if
one relator is a subword of the other, one may have to examine the actual Heegaard
diagram of the surgered knot. One looks for a way to cancel common subwords and
begin again with a shorter presentation. For the examples tried the usual presenta-
tion of the longitude has yielded a presentation in which neither relator is a subword
of the other. For this reason the entire computation can be made to be algebraic and
one never needs to look at Heegaard diagrams.

See §3 for an example of the application of this algorithm.

2. Definitions and enabling theorems. Each compact, orientable 3-manifold may be
constructed by attaching 2-handles to a handlebody. A handlebody together with a
set of instructions determining the (isotopy class of) curves along which the
2-handles are to be attached is called a Heegaard diagram of the manifold. In this
paper we shall often not distinguish between 3-manifolds differing only by attaching
or removing a 3-handle because these operations are canonical.

Let H be a handlebody and let a;, a,,...,a,, be disjoint simple closed curves on
dH. If we choose a complete system of meridian disks D|, D,,..., D, for H then each
curve @, determines a word in the free semigroup on x,, x;', x,, x3',...,x,, x;' by
traveling around the curve a, and recording x; or x;' when a; crosses D, in the
positive or negative direction. (With a little isotopic adjustment, we may assume that
a, N D; is finite.) The set of cyclic words {R,,...,R,} thus obtained is called a
presentation of a,,...,a,. Such a presentation is said to be geometric. If the
3-manifold M is obtained by sewing 2-handles to the curves a;, a,,...,qa, then
(xy,...,x,|R,,...,R,,) is called a geometric presentation of M. Caution: Two
different 3-manifolds may have the same geometric presentation, e.g. the lens spaces
Ls, and L, both have the same geometric presentation {a|a>).

THEOREM 2.1. The usual over presentation of the fundamental group of the comple-
ment of a knot is a geometric presentation of the knot complement S* — N(k).

In fact, topologists have a very strong affinity for geometric presentations because
the usual way of getting a presentation is to use some handle decomposition of the
space in question.

THEOREM 2.2. If (x,...,X,|R\,...,R,) is a geometric presentation of M and
R, = xj'R| where R is a word in the alphabet x,, x3',...,x,, x;'; then the
presentation {x,,...,x,| R,,...,R,, obtained by replacing each occurence of x, in the
relators R,,...,R,, by R is a geometric presentation of M.

For a proof of Theorem 2.2 see [O & SII, Theorem 3.3].
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THEOREM 2.3 (ZIESCHANG). If (x,,...,x,|R,,...,R,,) is a geometric presentation
of M and ¢ is an automorphism of the free group F(x,,...,x,) such that the total length
of the relators ¢(R,), $(R,),...,¢(R,,) is minimal among all automorphisms, then
(X1, X950, %, | O(R)),...,0(R,,)) is a geometric presentation of M.

For a proof see [Zie].

Before going further with our theorems we need to mention the problem of free
cancellations. A geometric presentation may well have free cancellations in it. For
example, the curve in Figure 2 below has a presentation aa~'a but this free
cancellation cannot just be pulled back as can the free cancellation in Figure 1.

FIGURE 1 FIGURE 2

This difficulty disappears when we use the shortest possible presentation because
geometrically nontrivial free cancellations can be assumed not to appear in the
shortest possible presentations under automorphism of the free group [O & SII]. For
this reason we simply ignore the free cancellation problem and treat all geometric
relators as if free cancellations can always be done.

THEOREM 24. If {(x,,...,x,|R,,...,R,) is a geometric presentation of M,
R,,...,R,, contains no free cancellations, and x,x, is a subword of R,, then the
automorphism of F(x,,...,x,) defined by x, - x,x5', x, > x, for i # 1 yields a

geometric presentation of M.

PROOF. Since x,x, is a subword of the relator R, there must be an arc A in the
P-graph [O & SI] of this presentation connecting x;” to x;. Now a simple closed
curve which is the boundary of a regular neighborhood of x;” U x5 U A will define
the automorphism in question (see [O & SII or Zie] for details on these simple closed
curves). A free cancellation in the resulting presentation would appear only if some
arc in the P-graph other than A intersected this curve more than once. This clearly
does not happen.

Whitehead [Wh] has given an algorithm for deciding if some automorphism
reduces the length of a presentation and for finding all such automorphisms (see also
[MLK.S., p. 166]).

THEOREM 2.5 (HOMMA, OCHAIL, TAKAHASHI). If (a, b|R,, R, ) is a minimal length
(under automorphisms), length > 2, presentation of the 3-ball, then R, is a subword of
R, or R, is a subword of R,.



360 R. P. OSBORNE

This is Corollary 2 from [H.O.T.].

THEOREM 2.6 (THURSTON). Surgery on a knot with Heegaard genus 2 complement
yields no counterexample to the Poincaré conjecture.

As pointed out in [Thurs] this follows from the Smith conjecture and the work of
Birman and Hilden.

3. An example. We illustrate the use of these theorems by applying them to show
that the knot shown below is determined by its complement, so that by Theorem 2.6

it has property P.
A NE
(N

FIGURE 3

First we write down the over presentation,
<a, b,c,d,e|cdb’'d™", c7'aea'cd ™', ¢ lacb'e b, be“a"e>.
The last relator is a defining relator for b, so we eliminate b and substitute e ~'ae for
it.
(a, c,d,e|cde”'a"'ed ™", c"'aea"'cd ", c'ace~'a"'e"'ae > )

The second relator is a defining relator for d so we eliminate d and substitute
c"'aea'c for it.

(a, c,e|aea”'ce”'a ec”'ae a e, c"ace"a"e"ae>.

Since there are no more defining relators we look for automorphisms that reduce the
length of our presentation. The automorphism ¢ — a, ¢ — ¢, e — a”'e reduces the
length and gives

<a, c,e|ea'ce”'alec \ae "¢, ¢"'ace 2ae )

The automorphism a — ca, b — b, ¢ — c yields

<a, c,e|ea'ela 'c eae ¢, ace“zcae>.

Next the automorphism a — ela,c - c, e — eyields

<a, c,e|ea’ec™'ae”'c, ace'zce"a>.

Nowdoa — a,c — ce, e - e to get

1

<a, c,e|ea*c"'ae " ce, ace"ca>.
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Whitehead’s algorithm tells us that there is no automorphism that shortens the
length of this presentation. According to Theorem 2.3 this presentation is a geomet-
ric presentation of the complement of our knot. Note that the second relator is a
defining relator for e. Eliminating e = ca’c we get

<a, c¢|a*ca *c'ac”'a *ca c2>

which again is a geometric presentation of our knot complement. We return to our
original picture of the knot and find that a meridian is presented by ¢ and the
longitude by ¢ ~2de~'cb~'a"'caec™!. If we follow these through out transformations we
will get a geometric presentation of these curves in the final presentation We get
that the meridian is c?a’c and the longitude is ¢~ 'a~2c2a 2c"'a%ca'cacaca‘ca?. It
follows that surgery on our knot that yields a homology 3-sphere has a geometric
presentation

<a c|a*caclac™'aca’c?, (c2a’c)(c'a2c3a % \a%ca \cacaca™ caz)q>-

It is now an easy matter to check that for ¢ # 0 neither relator will be a subword of
the other. It follows from Theorem 2.5 that nontrivial surgeries on our knot cannot
yield S3. By Theorem 2.6 then, no surgery on our knot can yield a simply connected
3-manifold.

4. Remarks. Using the above algorithm, Mark Willis [Will] has shown that the
knots 8,, and 8,5 from the table of knots in [Rolf] have property P. The author has
checked 8,,, 10,;, and 9,¢ for property P. Robert Huotari checked Perko’s knot
10,5, — 10, for a class project. Combining these results with those from [B & M],
[Sim] and [Tak] we now know that all knots with eight or fewer crossings have
property P with the exceptions 8, 8,, and 8,,. The knots 8,, and 8, do not have
complements of Heegaard genus 2. In fact, these three knots are the only ones with
fewer than 8 crossings to which our algorithm does not apply. The author is
presently working on a computer program that will apply the algorithm to knots
with less than 11 crossings to check those with Heegaard genus 2 complements for
property P. It appears that the density of knots with Heegaard genus 2 complements
decreases with increasing number of crossings. Noninvertible knots cannot have
Heegaard genus 2 complements [Os].
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