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INFINITE-DIMENSIONAL JACOBI MATRICES

ASSOCIATED WITH JULIA SETS

M. F. BARNSLEY1. J. S. GERÓNIMO2 AND A. N. HARRINGTON

Abstract. Let B be the Julia set associated with the polynomial Tz = z N + k¡z s ~ '

+ •■ ■ +A v. and let ¡i be the balanced T-invariant measure on B. Assuming B is

totally real, we give relations among the entries in the infinite-dimensional Jacobi

matrix J whose spectral measure is ¡i. The specific example Tz = r' — Xz is given,

and some of the asymptotic properties of the entries in J are presented.

1. Introduction. Let C he the complex plane and T: C -» C a polynomial,

T(z) = zN + kxzN~x + ■■■ +kN where N > 2 and each k, E C. Define T°(z) = z

and T"(z) = T ° T"~x(z) for « G {1,2,3_}. A fundamental role in the study of

the sequence of iterates {T"(z)) is played by the Julia set B. B is the set of points

z E C where {T"(z)} is not normal in the sense of Montel, and a general exposition

can be found in Julia [8], Fatou [6,7] and Brolin [5], It has positive logarithmic

capacity, and on it can be placed an equilibrium charge distribution p. This provides

a measure on B which is invariant under T: B -» B and is such that the system

(B,p, T) is strongly mixing.

In an earlier paper [1] we investigated general properties of ju and its associated

orthogonal monic polynomials. Here we restrict attention to the case where B is a

compact subset of the real line, and the orthogonal polynomials satisfy a three-term

recurrence formula. In [2] we proved, for N = 2, relationships connecting the

coefficients, which permit all the polynomials to be calculated in a recursive fashion.

Here we generalized the relationships so that the orthogonal polynomials of all

degrees can be obtained for any T for which B is a compact subset of the real line

(Theorem 1). The results are illustrated for T(z) — z3 — Xz with X 3= 3. When X = 3

the polynomials are those of Chebychev, shifted to the interval [-2,2], and when

X > 3 they become a generalization whose support is a Cantor set. In this case we

establish that both the coefficients (Theorem 2) and the associated Jacobi matrix /

(Theorem 3) display an asymptotic self-reproducing property.

2. Preliminaries.

Definition 1. p is a balanced T-invariant Borel measure on B if p is a probability

measure supported on B, such that for any complete assignment of branches of T~l,

namely Tfx forj E (1,2,3,.. .,JV}, p(Tfx(S)) = p(S)/N for each Borel set S.
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There is only one balanced  T-invariant measure on B, and the equilibrium

measure of Brolin is balanced [3]. If p is balanced and/ E LX(B, p), then [1]

(1) (zy(7;(z))>=Sy(/(z)>/7V   for7G{l,2,...,^-l},

where </(z)>= JBf(z)dp(z). Here

(2)

y'-l

Sj      -jkj — ¿d k/S/
/— i

with k, the coefficient of ZN~' in T for I E {1,2,...,N).

In [1] we showed that the sequence of monic polynomials {Pn(z)}™=0, orthogonal

with respect to p according to (i>/(z)Pm(z)>= 0 for I ¥= m, obey the following

relations:

(*)Px(z) = z + kx/N,

(h)P,N(z) = Pl(T(z))forlE{0,l,2,...},

(c)PNi(z)= T'(z) + kx/N for / G {0,1,2,...}.

3. Results. When B is a subset of the real line the orthonormal polynomials with

respect to p obey (b) and the following relation.

(3)    a(n+l)pn+l(x) + b(n)pn(x) + a(n)pn_x(x)=xp„(x),   « G {0,1,2,...},

/>-,(*) = 0,       Po(x)=\,

where

a(n)=(xPnPn.x)    for« G {1,2,3,...},

and

b(n) - (xp2)    for« G {0,1,2,...}.

The recurrence formula (3) can be recast as the formal operator equation

(4) J* = x*

where

(5) / =

b(0)     a(l)       0

a(l)     b(l)    a(2)

0       a(2)    b(2)

and \pT = (p0, px, p2,...). J can be treated as a selfadjoint operator acting on l2. In

[2] we showed that the coefficients in / obey certain recurrence formulas when T is

quadratic; see also [4]. We generalize that result here.

Proceeding formally we have

(6) J'rp = x'4>   for/G {0,1,2,...},

which leads to

(7) (WVê,iV+l)=   {x'PnN,
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for « G {0,1,2,...}, where êk is the l2 vector with one in the A:th place and zeros

elsewhere. Observe also that the invariance of p together with (b) implies

(8) a(n) = (xpnPn_])= {T(x)pnNpnN_N)

= a(nN)a(nN - I) ■ ■ ■ a(nN - N + 1),        « G {1,2,3,...}.

Theorem 1. Let a(n) = b(n — 1) = 0 for « « 0. Then all of the coefficients in J can

be calculated recursively using (8) and (7) with / G {1,2,...,27V — 1}.

The proof will require two lemmas.

Lemma 1. Let {p„)q  be the orthonormal polynomials associated with the balanced

T-invariant p. Then

(9) (X'PÏN) = D(1)   forlE{l,2,...,2N-l),

where

N-% when IE {1,2,...,N-l),

N

N^S^^n)- 2ZkjD(l-j)    whenlE {N,...,2N- 1},
£>(/) =

7=1

where S0 = N and S, is otherwise as defined in (2).

Proof of Lemma 1. For IE {1,2,...,TV— 1} the result follows from (1) with

f = p2N. For 1 = N + m,

N

(10) xN+m = xmT(x) -  2 kjXm+N-f

7=1

The lemma now follows on multiplying through by p2N, integrating, and using the

fact that

(11) (x-T(x)p2N)= N-xSm(xp2)= N'xSmb(n)

form E {0,1,2,... ,7V - 1}.

One can now see that the dependence on « on the right-hand side enters only

through b(n).

Lemma 2. Let C'(nN + 1, «TV + 1) denote the («TV + 1, «TV + 1) entry in J1. When

I = 2k, the coefficient in C2k(nN + 1, «TV + 1) with the highest index is a(nN + k)

and all other coefficients have lower indices. When I — 2 k + 1, the coefficients in

C2k+x(nN + 1, «TV + 1) with the highest index are a(nN + k) and b(nN + k); all

other coefficients have lower indices.

Proof of Lemma 2. We begin by computing C'(nN + 1, «TV + 1) with the aid of

(7). Thus

(12)
C'(nN+ 1,«7V+ l) = a(nN)C'~x(nN, «TV + 1) + b(nN)C'~x(nN + 1,«7V+ 1)

+ a(nN+ l)C'~x(nN +2, «TV + 1),        /G {1,2,.. .,2TV - 1},

with

(13) Cx(i, j) = a(i - l)8,_Uj + b(i - 1)0,,,. + a(i)8i+XJ,
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and

(14) C"'(i, j) = a(i - l)C">~x(i - 1, j)b(i - 1)

+ Cm-x(i,j) + a(i)Cm-x(i+ 1,7).

It follows immediately from (14) that Cm(i, j) = 0 if \i — 7|> m. From (13) and

(14) we find

(15)

and

Cx(nN + 1,«TV+ 1) = b(nN),

(16) C2(«7V + 1, «TV + 1) = a(nN)2 + b(nN)2 + a(nN + I)2.

Let us now assume that the lemma holds up to 2k — I. Then

(17)   C2k(nN + 1, «TV + 1) = a(nN + l)C2k~x(nN + 2, «TV + 1)

+ b(nN)C2k~x(nN + 1, «TV + 1) + a(nN)C2k~x(nN + 1, «TV + 1).

One can easily show by induction that if a(l) or b(n) appear in C"'(i, j) then

/ < (m + i + j)/2 and « < (m + i + j — l)/2. Consequently one need only con-

sider the first term on the right-hand side of (17). Therefore

C2k(nN + 1,«TV+ 1) u a(nN + I)
i=\

Ck(nN + k+ 1, «TV+ 1)

-(- {terms containing only coefficients with indices lower than «TV + k).

But from (14) we have

(18)

whence

(19)

C2k(nN + 1,«TV+ 1)

Ck(nN + k + I, «TV + 1) = u a(nN + I),
i=\

J a(nN + I)
i=i

+ {terms involving only coefficients with indices lower than «TV + k).

Likewise,

(20)    C2k+x(nN+ 1,«TV+ 1) = I] a(nN+ I)
L/=i

Ck+x(nN + k+ 1,«TV+ 1)

+ {terms involving only a(l) and b(l — 1) with / < «TV + k],

and (14) now yields

(21)     C2k+x(nN+ 1,«TV+ 1) = u a(nN+ I)
i=\

b(nN + k)

+ {terms involving only a(l) and b(l — I) with I <nN + k}.

This completes the proof of Lemma 2.
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Proof of Theorem 1. If one is given a(i) and b(i) for i < TV«, then Lemmas 1

and 2, together with (8), provide 2 TV relations from which one can explicitly

calculate a(nN + I) and b(nN + I) for / G {0,1,2,... ,TV - 1}. This completes the

proof.

Corollary 1. If B is an interval on the real line then B = [a, b] with a = -kx/N

— 2 and b = -kx/N + 2. Moreover, dp = dx/tt{(b — x)(x — a))x/2, and T(x) +

kx/N is the monk Chebychev polynomial of degree TV on B.

Proof. If B is an interval then the electrical equilibrium distribution p is just the

measure associated with the Chebychev polynomials of the first kind. Since all the

off-diagonal entries in J except for a(l) are the same, (6) implies these must equal

unity. Likewise, all diagonal entries in / must be equal to -kx/N, and the proof is

completed.

4. An example. We examine the case T(z) = z3 — Xz with X > 3, for which

Theorem 1 yields

(22) b(n) = 0,

(23) a(3n + I)2 = 2A/3 - a(3«)2,

(24) a(3« + 2)2 = A/3

and

(25) a(3n)a(3n- l)a(3n-2) = a(n).

From these relations and Corollary 1 it is easy to see that B = [-2,2] when X = 3.

For X > 3 it follows from [5] that B is a totally disconnected perfect subset of the

real line, with Lebesgue measure zero. As such, it is a generalized Cantor set.

Lemma 3. ForX>3 and « G {1,2,3,...}, 0<a(3«)< 1 and a(3n) < a(n).

Proof. From (23) and (25) it follows that a(l)2 = 2 A/3 and a(3)2 = 3/A.

Furthermore, from (23)-(25) we have

2„3 a(n)2
(26) a(3n)¿ = f

A 2A/3 - a(3« - 3)2 '

and the lemma follows by induction and equations (23) and (24).

Theorem 2. For X > 3 and m, s E {0,1,2,...},

T • Í      in    i       \2 t    \2Lima(m3" + s)   = a(s) .
«-♦00

Proof. First consider the case s = 0. Then from (26)

a(m3")2 = (3/A)a(m3"-1)2/ (2X/3 - a(m3" - 3)2)

<(3/A)a(w3"-1)2/(2V3- 1) < (3/A)"(2a/3 - l)""a(m)2.

Because 3/A < 1, and 2A/3 - 1 > 1, for A > 3 we now have Limn^xa(m3")2 = 0.

The proof is now completed by induction on m for s = 3m + k, k E {0,1,2,...},

using (23)-(25).



630 M. F. BARNSLEY, J. S. GERÓNIMO AND A. N. HARRINGTON

Results similar to Lemma 3 and Theorem 2 are valid for T(z) — (z — A)2 with

A 3= 2 and follow from [2]; see, for example, [4].

Now consider the sequence of infinite-dimensional Jacobi matrices {/<m3')}

defined for m, n E {0,1,2,...} by

j(mV) _

0 a(m3"+l) 0

a(m3" + 1) 0 a(m3" + 2)

0 a(m3" + 2) 0

\

Here the coefficients a(i) are those determined by (23)-(25). Since the support B of

the spectral measure of J is compact, it also is for each Jtmy'\ and, hence, each

matrix corresponds to a selfadjoint operator in /-,.

Theorem 3. For each m G (0,1,2,...}  and X>3 the sequence of operators

jy(m3")joo=o converges strongly to J.

This theorem, and indeed Theorem 2 also, are immediate when A = 3 because

then

/ =

0 10 0
10 10
0 10 1
0    0     10

\

Proof of Theorem 3. Since the spectrum of / is compact, the entries of J{mr) are

uniformly bounded. The result now follows since the weak convergence implied by

Theorem 2 implies the strong operator convergence

(27) lim ||(y-y(m3"))x|| =0,   foralljcG/2,

for banded matrices. This completes the proof.
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