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OPEN IMAGES OF ORDERABLE SPACES

M. HUSEK AND W. KULPA

Abstract. The class of open continuous images of orderable spaces is characterized,

and it is shown that it contains all suborderable spaces. Several results concerning

open images of metrizable spaces are generalized to higher cardinals, e.g., every

completely linearly uniformizable space is an open continuous image of a Baire

space (kx)x-

The aim of this paper is to solve a problem of van Wouwe [vW], by proving that

every suborderable space is an open continuous image of an orderable space. Both

authors solved the problem independently using practically the same idea; the first

author used a concrete description specialized to suborderable spaces, and the

second author used a more abstract technique which allowed him to characterize

completely all open images of orderable spaces. In addition, we shall characterize

open images of orderable spaces with monotone local bases and of linearly unifor-

mizable spaces (also of complete ones—a generalization of Hausdorffs, Michael's

and Ponomarev's results).

The notation and terminology from [E] will be used; we explain those terms used

frequently in this paper or not occurring in [E]. The word order means linear order

here, so that orderable space is a topological space such that there exists an order on

the underlying set with all open intervals forming an open base for the topology. A

suborderable space is a topological space which can be embedded into an orderable

space (another term is a "generalized orderable space"), which is equivalent to being

a Tx -topological space such that there exists an order on the underlying set with

some intervals forming an open base for the topology (see [C] for this equivalence).

A subset A of an ordered space is said to be convex (interval-like in [C]) if it contains

with any of its two points x, y an interval containing x, y. A topological space is

called linearly uniformizable if there is a uniformity inducing the topology and having

a monotone base of vicinities of the diagonal with respect to inclusion, or covers

with respect to refinement. Such a space is suborderable, and it is orderable provided

it is, e.g., dense-in-itself—see [K,, FK, H]. A wider class is the class of caterpillar

spaces, where every point has a monotone base of its neighborhoods (this class

includes first-countable spaces and suborderable spaces with x(*> ] -*~ » ■*})ö

X(x, [x, -» [) whenever x E ] «- , x[ n ]x, -» [). A still wider class is that of butterfly
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spaces, where every point x has a base of its neighborhoods of a form {Bx U {x) U

B21 B¡ E ©,-(*), i = 1,2}, where the ^(x) are ordered families of open sets; this

class contains all suborderable spaces and is contained in the class of all spaces X

with x(x) = X(x) *=! X\ for all x E X. We may, and shall, always assume that both

©](jc) and %2(x) are non void families of non void sets.

The sum 1(X¡ \ i E 1} of sets is the set {(/, x) | i G /, x E Xx). By a sum-order (if

all Xi and / are ordered) we mean the lexicographical order. Usually one omits the

sum-indices i in the sum but must then regard the X¡ as disjoint.

The class of all butterfly spaces (or caterpillar spaces) is closed under formation of

subspaces, sums, and open continuous images, but not under products (e.g. ((co() +

1) X (w, + 1))) and closed continuous images (e.g., the space of real numbers with

the set of integers identified to a point).

The class of all linearly uniformizable spaces is closed under formation of

subspaces, but not under sums, products, open or closed continuous images (if we

restrict ourselves only to linearly uniformizable spaces with the same character, then

that class is closed under sums and finite products).

In the sequel, we shall deal with ^-spaces only. It is not too difficult to show that

if /is an open continuous map on a butterfly space X onto a space Y, then for every

x E X either fx is isolated or xC-*) = x(fx)-

Theorem 1. Every butterfly space is an open continuous image of a zero-dimensional

orderable space.

Proof. We may suppose that the investigated space has no isolated points since

every butterfly space P is an open continuous image of the butterfly space P' which

is dense-in-itself. (Let Q stand for the rationals and P' = {(x, q) G P X Q | either

q — 0 or x is isolated in P}.) The topology of P' is the coarsest one making pr^:

P' -» P continuous, and pr^: P' -» Q continuous at all points (x, q), x being isolated

in P (i.e. the sets pxP '(G), G open in P, and (x) X H, x isolated in P, H open in Q,

form an open base of P'). The map pxP is open. If P is caterpillar or suborderable

then P' has the same property (for suborderability use the lexicographical order).

Suppose now that a dense-in-itself butterfly space X is given together with infinite

monotone collections %¡(x), i — 1,2, x G X, from the definition of butterfly spaces

and choose an order on X. Let

%(x) = {%x(x), D) + (x) + (%(x),D),    % = 2 {$(*) | x E X)

(lexicographical sums), and define L(X) to be the following subset of the lexico-

graphical product (X X <&)": z = {(x„, Bn)} E L(X) iff for all n E a,

(i)BnE%(x„),

(n)xn+x EBn,

(iii) Bn+X E B„,

and there is some n E w such that Bn = (xn).

For the above z E L(X) we let fz — xn. Clearly,/maps L(X) onto A'and we shall

prove that it is continuous and open in the orderable topology on L(X).

Let x — {(xn, Xn)} be a point of L(X) and A a neighborhood of fx in X. Let k be

the first n with | X„ \= 1. There are B' E <&l(fx), B" E %2(fx) such that B' U B" C

A, and B' U B" C Bk_x if k > 0. If we define u = {(un, U„)}, v = {(v„, V„)} to be
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points of L(X) with the same nth coordinates as x has for n < k, and (uk,Uk) —

(xk, B'), (vk, Vk) = (xk, B"), then u < x < v and f]u, v[ E A. Thus/is continuous.

We shall now prove that / is open. Let u, v, z E L(X), u<z<v, where

u = {(«„, U„)}, v = {(v„, V„)}, z = {(z„, Z„)}. Let k be the last n with Z„ open (if

Z0 = (z0) we put k = -1,Z_, = X). Then there are B' E <S>x(zk+x),B" E%(zk+X)

such that B' U B" C Zk and B' > Uk+X provided zk+x = uk+x, B" < Vk+X provided

zk + x = vk+x. For x E B' L) B" we define (x„, Bn) = (z„, Z„) for n < k, xk+x =

zk+\- ^k+\ = B' or ^a + i = B' depending on whether x E B' or x E B", and

(x„, B„) = (x,(x)) for n > k + 1. Clearly, u < {(x„, B„)} < v, so that/]«, v[ D B'

U B". Consequently, / is open.

The zero-dimensionality of L(X) follows from the fact that for any z =

{(z„, Z„)} EL(I) with the last open set Zk, the sets {{(«„, U„)} \ (u„, U„) =

(z„, Z„) for « "5 /c, w^+i = zfc+1, i/A+1 = B), where Z? G 035(z/t+1), form clopen basic

neighborhoods of z in L(X).

Corollary 1. 77ie class of continuous open images of (zero-dimensional) orderable

spaces coincides with the class of all butterfly spaces.

Remarks, (a) The correspondence {P -> P'}, {/ — ( / X lQ)/P) is an idempotent

functor L0 on the category of all topological spaces with open continuous maps onto

its subcategory of all dense-in-itself spaces. The projections [P' -» P) form a natural

transformation from L0 to lTop. The functor L0 preserves many nice properties. It

may be regarded as a weak coreflection.

(b) If the space X is caterpillar, then the constructed space L(X) is caterpillar as

well so that we have another corollary (also using the fact mentioned in the

introduction that an open continuous image of a caterpillar space is caterpillar, too).

Corollary 2. The class of all open continuous images of (zero-dimensional)

orderable caterpillar spaces coincides with the class of all caterpillar spaces.

(c) If X is a first countable space, then L(X) is metrizable (if 9>x(x) = %2(x) =

{Bn(x) | n G co} is a base at x, then

Uk = {({un, Un), H, Vn)) I 3«0, x: u, = o„ Ut=Vt

if'<«0.««o = u»o'l7»oU Vn0^Bk(x)}>        kEu,

are equivalences which induce, as a base for a uniformity, the topology of L(X)).

Consequently, L(X) may be embedded into a Baire space. Thus we have got

Ponomarev's result [P]:

Corollary 3. Every first countable space is an open continuous image of a subspace

of a Baire space.

Of course, the direct proof is simpler than using our Theorem 1, but one can guess

from the above consideration how to generalize the Ponomarev theorem to higher

cardinals. To do that, we prefer another approach which is closer to the original one

in [P].

At the beginning we shall proceed as Ponomarev did. Let % be an open base for X

containing X, where X is a caterpillar space. Denote by L,(X,%) the following
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subset of %xX: u = {u^ 1£ G x^) belongs to LX(X, ©) if {u^} is a base at some

point fu of X and there is an ordinal pu such that uß E ua ¥= X fox a < ß < pu and

wa = A for a>pu (then, of course, /?« = sup{a | Int n {u( | £ G a}} ^ 0). If we

regard ® asa discrete space, LX(X, <$>) the subspace of the product space ®x* then

/: L](^r, ®) -* X is a continuous surjection but it need not be open (it is open

provided x(x) = X^ I0r aU nonisolated x E X, which is the case of first countable

spaces or of linearly uniformizable spaces).

If we ignore the coordinates m£ for | 3= pu we obtain the set L2(X, "35) endowed

with the topology having

{{v(} ELx(X,<$)\vi = uifox£EK},        K EXX, | K | < w, sup K < pu.

as a local base at {u£}. Then/: L2(A", S).-» AT is an open continuous surjection. It is

easy to see that one can modify the topology of L2(A\ ®) to obtain another space

L3(X,%) such that /: L3(X, <$>)-> X is open and continuous, and L3(A, °j>) is

caterpillar: one omits | K\< w in the above definition of the topology. (The spaces

LX,L2 need not be caterpillar if xX is uncountable.) The space L3 is nonarchi-

medean (the defined base with K initial segments has the property that any two of its

members are either disjoint or comparable by inclusion), thus by [K2], L3(X, ®) is

orderable provided it is dense-in-itself (in general it is suborderable). This gives

another proof of Corollary 2.

Since open continuous images of caterpiller spaces preserve characters, one cannot

expect an open continuous preimage of a general caterpillar space to be linearly

uniformizable. But if x(x) = X^ 10r every nonisolated x E X, then L3( A, <$) is

linearly uniformizable: Ua = {({«{}, {%}) | «£ = v( for ¿ G a), a E xX, form a base

for such a uniformity. Thus we have the following generalization of the Ponomarev

theorem (every linearly uniformizable zero-dimensional space can be embedded into

a generalized Baire space (see Remark (g) for the definition)):

Theorem 2. The class of all open continuous images of linearly uniformizable

orderable spaces X with x X = k coincides with the class of all caterpillar spaces X

having the property x(x) = K for every nonisolated x G X.

Remarks, (d) Sometimes it may be better to look at points of L3(X, %) as families

{uç 11 G x(*)}> where {w^} C 'S is a local base at x such that a E ß E x(x) implies

ua D uß.

(e) If we take % to be all open subsets of X, we denote L3(X, @) by L3(X). To

every open continuous map /: X -^> Y ( X, Y caterpillar spaces) one can assign an

open continuous map L3(f) = {{u^} -» {fu^}}: L3(X) -> L3(Y). Thus L3 is a

functor on the category G of all caterpillar spaces with open continuous maps into its

subcategory of all zero-dimensional caterpillar orderable spaces. The maps/: L3(X)

-> X form a natural transformation of L3 into le.

(f) Results from [vW] dealing with comparing various classes of open continuous

images of suborderable spaces can be proved now in a simpler way by using our

Theorem 1. For instance if A1 is a stratifiable open continuous image of a suborder-

able space, then A1 is a butterfly space with countable pseudocharacter, thus a first

countable space—consequently, it is a Nagata space.
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(g) The classical Baire space is topologically a power Du, where D is a discrete

space—we shall write it in the form A", where X = | D \ . To generalize such spaces

one must take the power À", k a regular infinite cardinal, with the K-box topology.

We shall denote that by (A")K in agreement with [CN]. Every linearly uniformizable

space X can be embedded into (XK)K (with A = wX, k = xX). Using generalized

Baire spaces, we can prove the following generalization of Hausdorff's result from

[Ha] (for complete metric spaces).

Theorem 3. Every completely linearly uniformizable space X is an open continuous

image of the generalized Baire space ( wXxX)xX.

Proof. Let wX — X, x X = k and let u be a complete uniformity on X having a

monotone base of open covers {6lla | a G k} with %0 = ( X) and such that

A {%,£ | $ G a) = %a    for limit a;

if k > w we may suppose that %a axe decompositions, for k = u let %a, a > 0,

consist of all open balls from a base of X of cardinality A of diameter at most 2~a

for a given metric. We may also assume that for U E s?Ia the set {V E Glla+, | V C U)

is well-ordered and forms an initial part of A of length cpU —\{VE Gtla+X \V E U)\ .

If x = {£a | a E k) E A", then fx will be the unique point of Pi [Ua | a G k), where

Ua E Glla form a chain constructed transfinitely in the following way: suppose that

all Uß axe defined for ß G a (clearly, U0 — X); if a is limit, then Ua = n„eaL^, if

a = ß + 1, then Ua is the r/th member of {V E slla \ V E Uß}, where |a = £ • q>U + r/.

The map / is onto and is continuous and open because it maps basic open sets

{{£„} G AK | £„ = va for a « /?), /8 G k, {r/0} G A'3, onto the members of %ß, ß G k.
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