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AN IMPROVED ESTIMATE IN THE METHOD OF FREEZING

ROBERT E. VINOGRAD

Abstract. Let x = A{t)x and \k(t) be the eigenvalues of the matrix A(t). The main

result of the Method of Freezing [1] states that if \\A(t)\\ < a. Re aa(0 < A0 and

\\A(t) -/í(í)||<9|r-í| .then

ll*(0ll < l|.v(f0)l|Ö8exp(Ao + 2a\s)(t - t0)       (t > r„)

for all solutions of the system, where

As = (C„.5/4^)l/,"+l).

The previous best known value. C„ = n(n + l)/2. is reduced to the substantially

smaller value 2«"e""/(" — ')!< \/2 n/rr.

The main result of the Method of Freezing [1] for linear differential equations can

be stated as follows:

Let an n-dimensional system

(1) x = A(t)x

be given and let Xk(t) be the eigenvalues of the matrix A(t). If

(2) M(/)ll<fl,

(3) ReAA(0<A0.

(4) \\A(t)-A(s%<8\t-s\,

then all solutions of the system admit the estimate

(5) ||x(Ol|^||*('o)ll¿V<A<>+2^><'-'«>        (t>t0)

where

\s=(C„-8/4a2yA"+]\       C„ = n(n+l)/2.

and Ds depends only on 8.

Remarks, (i) In the trivial case 5 = 0, i.e. A(t) = const., \s has to be replaced by

an arbitrary e > 0 and Ds by DF.

(ii) If A(t) is differentiable, then (4) is equivalent to \\À(t)\\ <S 8.

(iii) (5) is true but trivial when Xs > 1. So the method is of interest just for 8 small,

in other words, for systems (1) with "slowly changing" matrix A(t).

We show that for 8 small enough, the constant Cn can be replaced by one close to

(6) C; = 2n"e-"/ («-!)!.
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Since by Stirling's Formula,

C'„ - 2n(n"e-"/n\) < /2/i/ir ,

we have C'n < Cn for n = 1,2,... and C'n = o(Cn).

1. Theorem   1.  Let (2)-(4) hold.  Then given e, 0 < e < (n + 2)2/2,  there is

8(e) > 0 such that for 8 < 8(e) estimate (5) holds with

(7) \s =[(C; + e)o/4«2]1/("+n,        Q = 2«V-y (« - 1)!.

The value of 8(e) can be expressed explicitly:

(8) 5(e) = 4iI2-e'1+,[2/(« + 2)2]"+2.

The trivial case 8 = 0 is as in Remark (i).

To prove this theorem we need a number of preliminary steps.

2: The "frozen" equation. For simplicity we let t0 = 0 in (5); the general case can

be treated quite similarly—just replace (0, /) with (t0, t0 + t).

Fix a value tx ("the point of freezing") and rewrite (1) as

x = A(tx)x +[A(t) -A(tx)]x.

Then by the Variation of Constants Formula, we have for every solution x(t) of

(1):

(9) x(t) = eA^'x(0) + i'eA('^'-s)[A(s) - A(tx)]x(s) ds.

Notice that this is an identity in /,. Therefore tx can be chosen arbitrarily, in

particular being a function of t. A proper choice of /, will play the crucial role.

3. To estimate the norms in (9) we need the following well-known inequality (e.g.

see [1] or [2]): If (2) and (3) hold, then

(10) \\eM'^\\^p(2at)e>">\

where p = pn_x and

(11) pk(z) = \+z/ll+---+zk/kl.

Let

(12) ||*(0ll = ||*(0)||e<*o+2«A>'«(0

and t, = t — y/2a, where X > 0 and y will be chosen later. Then taking norms in (9)

and using (4) and (10) we get

«(0 < p(2at)e-2aX'  +8 f'\t - s - if- p(2a(t - s))e-2aM'-s)u(s) ds.
Jq I 2.(2

Now apply a particular case of the general Cone Theorem (e.g. see [3]).

Consider an integral inequality

u(t)<f(t)+ f'F(t,s)u(s)ds       (rs*0)
•'o
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where all functions are real valued, continuous and nonnegative. Iff(t) is bounded and

frF(t, s)ds^ q< 1    forallt>0,
JQ

then u(t) is bounded: u(t) < sup f(t)/(l - q) (t s= 0).

In our case/O) = p(2at)e~2aXt is clearly bounded. So if we manage to prove that

I = 8Í'\t-s-^-  ■ p(2a(t - s))e-2aM'-s) ds *£ q < 1
/n I z.a

for 8 and À = Xs as in Theorem 1, then u(t) will be bounded and (5) will follow by

(12). (The bound for u depends on 8; that is why Ds appears in (5).)

4. Minimization of the integral. First transform I to a simpler form. Letting

2a(t — s) — r and 8/4a2 = y, we have

Jp2at /-oo
\r - y\- p(r)e~Xrdr< y      \r - y\- p(r)e~Xrdr.

0 'O

Now choose y to minimize the integral

/•oo /.y /-co

(13) J=       \r-y\-p(r)e-Xrdr=      +       .

Setting dJ/dy equal to zero gives the equation iny:

p(r)e~Xrdr = \    p(r)eXrdr,

0 *v

which clearly has a unique positive root y0. Then (13) yields

'■*, = -/' rp(r)e-Xrdr + j   rp(r)e~Xrdr.

The change of variables z = Xy0 is convenient, and then the direct evaluation of

the above integrals via the elementary formula

jP(x)e'Xxdx = -e Aj

X \2 \m+l
+ c,

valid for every wth degree polynomial P(x), shows that (14) takes the form

(15) Px(z) = ie*   or   2Px(z)e~^ I,

where

A„-i   I' A„-i  2! A„_,   (« - 1)!

and A^ = 1 + A + • ■ • + Xk, while

= ax(z) a2(z) an(z)

■'—        \2           X3 X"+'  '

where (see (11)) afc(z) = k[2pk(z)e'z — 1].

Therefore the only task now is to prove

(16) Y-U = y[ax(z)/X2 + ■■■ + an(z)/X"+x] < 1

for y = 8/4a2 and X = Xs as in Theorem 1.
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5. Recall that z denotes the only positive root of ( 15) whose existence has already

been established. Also notice thatpk(z)e~z « eze~z = 1 and hence ak(z) < k.

This estimate will suffice for k < n — 1, but an(z) has to be found more explicitly.

We have

2„(z) = n\2p„(z)e~z - l] = n
2z"e~z
é*¿r + 2Pn_¿z)e--\

Since the function z"e z (z > 0) takes on its maximum at z = n, we have

2z"<rz   .   2n"e~"

Next,

2p„-,e"

n! (w-1)!

1 =2e-z(px+p„„, -px) - 1

= 2e-*(/»ll_I-/»x)    (by (15))

x--2

c„.

X-2e~z
A,-,    1!

+
A"-3 + À"-2     Z2

2!A,

+ ■••+■
1 + • • • +\"

(«-!)!

^X-2e"2
z       z'

TT+2! +

,»-i
+

(«-!)!

<X-2e-zp„^x(z)<2X.

Finally, an(z) = a*(z) + Xa**(z), where

fl:(z)<q,',       a:*(z)<2n,

so

(17) +
X2

A2 + "'+   X""'

!   gB-2    !    an-\ + <*

n

X"
+

2  |   (/i - 1) + 2n   |    C'n

X"

Notice that

C'n <,¡2n/m <(n + 4)/2    for«>l,

hence the sum of the coefficients in the previous line is

(18) B = 1 + • • • + (« - 2) + (m - 1) + In + C'n < (n + 2)2/2.

6. Estimating roots of some polynomials. Consider an equation in X (X > 0):

(19) ôy(X)=Y[VX2 + ---+VAn+l] = l,

or equivalently

(20) X"+x=y(bxX"-x + ---+b„),

where bk > 0, k = 1,...,«, and y > 0. Let fe, + • • • +£>„ = B.
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Lemma, (i) (19) has a unique positive root Xy.

(ii)X? < X if and only if Qy(X) < 1.
(iii) If By < 1, then X   < (By) i/(«+D

(iv)IfO<e<Band

(21) Y<yO) = en+x/Bn + 2,

then

(22) \<[{bn + e)y]XAn+X).

Proof, (i) and (ii) are clear because Qy(X) strictly decreases from oo to 0 as X

ranges from 0 to oo. (iii) If By < 1, then Qy(l) = By < 1, and by (ii), Xy < 1. Then

(20) shows that X"y+X = y(bxX"y + • ■■ +bn) < By. (iv) Given (21) where 0 < e < B,

weba\eBy<(e/B)"+x < 1, and so by (iii), Xy < (By)x/(n+X) < 1. But then

M7' + • 7 +bn-iK <(bx + '" +¿„-1)\y < BXy < B(By)W("+U < e.

Now (20) implies (22).

7. Proof of Theorem 1. Look first at the equation (cf. (17))

QyW   =
1 (n - 1) + 2n       Cn

X2 A" X"+l

Look at the equation Qy(X) = 1. By Lemma (iv), its root is

in which, by (18), B < (« + 2)2/2. Given 0 < e *£ (n + 2)2/2, let

y(e) = e"+x[2/ (n + 2)2]" + 2 < e"+x/B"+2)

which is exactly (8). Now fix 0 < Yo < yO) and set

As=A0=[(C„' + e)y0]1/("+,>,

which is just (7). Let z0 be the root of (15) with this fixed X0. Then all ak(z0) become

fixed, and by (17), Yo^ < ÔYo(X0).

x7o<[(c; + e)Yo]1/<n+,) = Xo>

and by Lemma (ii), Qyo(X0) < 1. So (16) holds, and the proof is completed.
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