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TRANSFERS, CENTERS, AND GROUP COHOMOLOGY1

DANIEL H. GOTTLIEB

Abstract. The transfer for fibrations is shown to exist for fibres with finitely

generated total integral homology groups. This improvement is applied to cohomol-

ogy of groups.

1. Introduction. The transfer for Hurewicz fibrations in [BG] was constructed for a

fibration whose fibre F is homotopy equivalent to a finite CW-complex. In fact, it

holds when F has a finitely generated total integral homology group. That is when

//„(.F;Z) is finitely generated. A corollary involving w: Xx -» X also holds for

finitely generated //„,( X; Z). These results are stated in the context of (co)homology

of groups, where the improvement is particularly useful. There are transfer homo-
p

morphisms for surjections G -» K whose kernels have finitely generated homology.

The result concerning w translates into a theorem about the centers of groups G with

finitely generated H^G; Z).

We apply these results to obtain the following two theorems. We denote by [H, G]

the group generated by commutators hgh~]g~] such that h G H and g G G, and by

X( H) the Euler-Poincaré number of the group H. That is

x(#) = 2(-l)'rank(//,(//;Z)).

Theorem 4. Let H be a normal subgroup of G such that //„.( H; Z) is finitely

generated. Then «*(W) G [H, G] for all h G H n [G, G].

Theorem 5. Let //„(//; Z) be finitely generated. Let C be a central subgroup of H.

Then c*(H) G [H, H] for alle G C.

We also apply the transfer to the case of central extensions of free abelian groups

of finite rank.

2. Stably finite complexes. Spanier-Whitehead duality is always exposed in the

literature as holding for finite complexes. But it is a triviality to observe that it works

just as well for stably finite complexes. By a stably finite complex we mean a

CW-complex X for which some suspension SkX is homotopy equivalent to a finite

complex.

In fact a duality map is defined by p: X A X* -» S" for some « such that the

homomorphism Hq(X; Z) -* Hn~?{X*\ Z) given by the slant product (p*[S"]/ ■ ) is
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an isomorphism. Spanier showed that for every finite complex X and some « there is

a duality map p: X A X* -* S", and X* is called the dual of X. It is then immediate

that if X is stably finite, there must exist a duality map p: X A X* -» 5".

In [BG] the concept of Spanier-Whitehead duality is extended to Hurewicz

fibrations over B with well-based cross-sections. A duality map is a fibre preserving

map from B X S" ^ E A BE (where E and £ are the total space of fibrations with

specified cross-section and A B means reduced fibrewisejoin) such that S" -» Fh A Fh

is a duality map for every fibre Fh and Fh of E and £ respectively. The existence of

duality maps for stably finite complexes then implies that for a Hurewicz fibration E

with a finite-dimensional CW-complex B, a well-based cross-section, and fibres

stably equivalent to a finite complex there is another such fibration £ and an « such

that

B X S"^E ABÊ

is a duality map. As in the usual theory, there is a duality map

/2: E /\BÊ ^ B X S".
p —

Now if F -» £ -» B is a Hurewicz fibration, we denote by £ the fibration E

disjoint union with a copy of B, which serves as the cross-section. The transfer map

t(/) is defined by

u   _ „  (1,/)A1    _ _ .   lA/i   _
S" X B^E ABE      ->      EABEABE   -   EAB(BXS")

i

(BX S") ABE

which gives t(/): S" A (B/A) -> 5" A (£/£„) where £, = /r'M) and/: £ ^ £ is

a fibre preserving map. All the properties of t(/) go over to the case of stably finite

fibres without changing a word of the proof.

Now a stably finite CW-complex has a very nice homological characterization. A

theorem of Milnor states that a simply connected complex which has finitely

generated integral homotopy has the homology type of a finite complex [W, Prop-

osition 4.1].

Proposition 1. A CW-complex X is stably finite if and only if HJ( X; Z) is finitely

generated.

Thus the transfer is defined for fibrations with fibres £ such that //„,(£; Z) is

finitely generated.

i       p
Transfer Theorem. Let F^> E -* B a Hurewicz fibration so that //„,(£; Z) is

finitely generated, F is a CW-complex, B is a finite-dimensional CW-complex, AGB

is a subcomplex, and f: E -» £ is a map so that p ° f = p. Then there exists an S-map

t(/): B/A -» E/EA so that for singular homology p „ ° r(f)+ = A^. (multiplication by

the Lefschetz number off = f\F: F -» F). Also

(a) t(/)* ° p* = A.f, on singular cohomology.

(b) For ring spectra r(f)*(p*(a)VJß) = a U (r(f)*(ß)) and/>„(t(/)„(x) n >>)

= jc n T(/)*(y).
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A corollary of the transfer is the following result. Let w: fi£ -» £ be the map

arising from the fibration in the above theorem.

w Theorem. Af,{u) — 0 G {ÜB, F] where { } denotes the stable homotopy classes

of maps.

Remark. This is the generalization of Theorem 1.1 of [BG], Dold and Puppe can

remove the finiteness hypothesis on B in [DP; see Theorem 6.2]. Thus B is a

CW-complex, not necessarily finite dimensional.

3. Groups. In this section we consider the Transfer Theorem and u Theorem in the

context of group (co)homology.

There is a functor from groups and homomorphisms to spaces and maps so that

for every group G there is an Eilenberg-Mac Lane space BG and for every homomor-
p

phism G -» G' there is a map r: Bc -» Bc, which induces the corresponding homo-

p*
morphism on fundamental group, i.e. rn: irx(Bc) = G -> G' = trx(Bc,).

From now on Y will always denote a constant group of coefficients. The homology

(resp. cohomology) of a group G with coefficients, H^(G; Y) (resp. H*(G; Y)), is

isomorphic to Hj(BG; Y) (resp. H*(BG; Y)).

Now a short exact sequence of groups

1^H^G^K^I

gives rise to a fibration of classifying spaces

If HJ(H\ Z) is finitely generated, we may apply the transfer theorem to the fibration.

i       p
Theorem 2. Let \-*H-+G->K->l be an exact sequence. Let H^(H;Z) be

finitely generated. Let f: G -» G be a homomorphism such that of — p. Then,

(a) There exists a homomorphism t%\ H^(K; Y) -» Hj(G; Y) so that p„ n„ = Ay.,

multiplication by the Lefschetz number off — f\H.

(b) There is a homomorphism t*: H*(G, Y) -» H*(K; Y) so that r*p* — Ay.

(c) r*(p*a UjS)=«U t*(j8) and p*(rm(x) n j) = x D t*(j).

Remarks, (a) The Lefschetz number

00

Ay.= 2 (-l)'(tnce/«).
i=0

If/is the identity homomorphism, then pf = p and Ay. = x(H), the Euler-Poincaré

number.

(b) There are no conditions on >v.

The map w: Í2/? -» £ factors through FF, 1 -» £ where £F, 1 is the space of self

maps of £ homotopic to the identity and cox evaluates/: F -> £ at some point x G £.

In [G, Theorem II.2] if £ = /5G, then £F, 1 = Bc where C is the center of G. Also wx:

j9c -> t3c induces the inclusion of C into £. Thus the w Theorem gives us the

following:
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Theorem 3. Suppose w: H -» G is the inclusion homomorphism of a central subgroup

H into G. If H^(G; Z) is finitely generated, then

x(G)u, = 0:HjH;Y)^H»(G;Y)

and

x(G)u* = 0: H*(G; Y) - H*(H; Y).

Remark. In [G, Corollary 4.3], it was shown that if x(G) ¥= 0 and BG is homotopy

equivalent to a finite complex, then G had trivial center. Stallings [Stg2] extended

this to groups with finite free resolutions. But on the other hand, Baumslag, Dyer

and Heller have shown that any abelian group can be the center of a group G such

that H*(G; Z) = 0, [BDH, Theorem 7.1].

Now [KT] have shown that for every space there is a group which has the same

homology. [BDH] have shown that one may choose a group G so that if the space

were a finite complex then BG is homotopy equivalent to a finite complex.

4. Applications.

Theorem 4. Suppose H^(H; Z) is finitely generated where H is a normal subgroup

ofG.IfHG[G,G], thenhx(ll) G [H,G] for all « G H.

Proof. Consider the Stallings-Stammbach exact sequence [Sis,, Theorem

2.1 ; Steh, c; Sj, Theorem 4.4],

H2(G)^ H2(K) ^ H/[H,G]'^ HX(G)^ HX(K) -0

where p: G - G/H = K. Now //,(G; Z) = G/[G, G]. Since H C [G, G] we see that

/'„ = 0. Therefore 3 is onto. Now there is a transfer homomorphism t^: H2(K) -»

H2(G) so that p+T+ = x(H)- S° X(H) annihiliates every element of ///[//, G].

Theorem 5. Suppose C is central in H. Suppose H^(H;Z) is finitely generated.

Then cx(H) G [H, H] for all c G C.

Proof. Let a>: C -» H be the inclusion. Then

X(//R = 0: //,(C) s C- H/[H, H] s //,(//).

Remark. There is a curious relationship between the above two theorems. Note

that C is central in H if and only if C is normal and [C, H] = 1. Now for any

normal subgroup H of G we have the following series of normal subgroups in H.

\ G[H,G}GH C\ [G,G] GH.

The first theorem has the hypothesis that H n [G, G] = H and the conclusion that

f¡x(H) g [H, G]. The second theorem has the hypothesis that [H, G] = 1 and the

conclusion that hx(G) G H D [G, G].

Recall that the lower central series of a group G is a descending sequence of

normal subgroups defined by G, = G, Ga+X — [Ga, G] and Gß — (^a<ßGa for limit

ordinals.

Corollary 6. Let G be a group so that H^(Ga; Z) is finitely generated and

x(Ga) = ± 1. Then Ga = Gßfor all ß> a> 1.
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Proof. We only need to show that Ga — Ga+]. We apply Theorem 4 for the

subgroup H - Ga. Then Ga C Ga+X. Hence Ga - Ga+X.

Remark. This corollary implies an interesting observation. It is a theorem of

Magnus [M] that the intersection of the lower central series of a free group is the

trivial subgroup 1. So a free group on two generators, £, has the property that

Fu — 1. But if £ is the commutator subgroup of some larger group G, then Gu = F.

This follows since x(^) = -!• There do exist groups G such that G2 = £. For

example the knot group of the trefoil knot.

/       p
Theorem 7. Let Zr -» G -» K be a central extension where Zr is the free abelian

group of rank r. Suppose <b: G -» Zr w a homomorphism. Then there are transfers t^:

H«(K; Y) - H„(G; Y) and t*: H*(G; Y) - //*(#; T) so that p/T, = det(<#> ° i)

and t* ° p* = det(<i> ° /).

Proof. Suppose /: Zr -» Zr is a homomorphism. Now H^(Zr; Z) = A(Zr), the

exterior algebra on Zr. It is not difficult to see that the Lefschetz number of / is

Ay = det(7 — /) where / is the identity.

Now consider <b: G - Zr. We define $: G - Gby$(g) = g-(<Kg))"'. Since Zr is

in the center of G, $ must be a homomorphism. Also note that p ° $ = p since <i>(g)

is in the kernel of p for all g. Thus there exists transfers for homology and

cohomology where the relevant number is the Lefschetz number of 0 | Zr: Zr -> Zr.

But $ | Zr = / — $ ° i where we use additive notation. So

A»|Z, = det(/ - O | Zr) = det(/ - (/ - <b ° /)) = det(o> o /).

Theorem 2 gives the required transfer.

Central extensions are well understood. If C -> G -» 7^ is a central extension, it

corresponds to an element kG G H2(K; C). Conversely every element of H2(K; C)

corresponds to a central extension of C by K. There is a cohomology exact sequence

0 - H\K; C)P^H\G; C)'^H\C; C)^H2(K; C)

Ip*

H2(G;C)

Now kc = 0(1) where

1 G H\C; C) s Hom(i7,(C; Z); C) = Hom(C; C)

corresponds to the identity homomorphism 1: C -> C. In the case where C — Zr we

have the following result.

Theorem 8. Lei k G H2(K;Zr) have order N. Then the corresponding central
i       p

extension Zr — G^ K admits transfers t^ and t* suchthat pj^ = Nr andr*p* = Nr.

If k has infinite order then the only possible transfers in integral cohomology satisfy

T*p*   = 0.

Proof. Now p*(k) — 0, so if k has infinite order and t* is a transfer so that

T*p* = N, then Nk = r*p*(k) = 0. Hence N = 0.
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If Nk = 0 we have S(N- 1) = 0. So AM G H\Zr; Zr) is in the image of <*:

H\G;Zr) -» H\Zr,Zr). That implies there is a <f>' G Hom(Hx(G,Z);Zr) so that

<i>' °, = N- 1.

Then 0: G -> #|(G; Z) -* Zr satisfies <f> ° i = N: Zr - Zr. Here « is the Hurewicz

homomorphism which is onto. Now there are transfers Tt and t* so that p¿r# =

dett> ° i) = det(N) = Nr and similarly T*p* = Nr.

K. B. Lee has a proof of Theorem 8 which uses cochain arguments and avoids the

exact sequence above.

Theorem 8 relates to work of Lawson and Yau. They study compact manifolds of

nonpositive curvature in [LY]. If M has nonpositive curvature, then M must be a

K(ir, 1). Now Lawson and Yau show that the center of -n must be a free abelian

group of rank k where k is the dimension of the group of isometries of M. Thus one

gets a central extension 0 -> Zk — 7rx(M) — K -+ 1 where K is the quotient of

77,(M) = tt and the center Zk.

Conner and Raymond [CR] (see p. 56, paragraph (f)) observe that the classifying

element of this extension has finite order. Thus Theorem 8 applies here and there is

a transfer for this extension. In particular, for rational coefficients, the homology of

M splits as a tensor product of H*(T, Q)sA*Q and H*(K; Q).

I would like to thank K. B. Lee for pointing out the connection of Theorem 8 and

the above work.
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