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TARSKTS EXTENSION THEOREM FOR

GROUP-VALUED CHARGES

VINCENZO AVERSA AND K. P. S. BHASKARA RAO1

Abstract. A result of Tarski on extensions of real-valued charges is extended to

group-valued charges for certain groups.

1. Introduction and notation. A finitely additive function on a field of sets taking

values in a group will be called a charge. The purpose of this paper is to examine

and extend the validity of the following theorem of Tarski (see [3 and 1]) for

group-valued charges. 2X is the power set of a set X.

Tarski's Theorem. If Q is a field of subsets of a set X, then any real-valued charge

on G can be extended as a real-valued charge on 2X.

We assume all groups are commutative, though this is unnecessary. For any

collection 9 of subsets of A, (ÍF) is the field generated by %. \A | is the cardinality of

a set A.

2. Results. We start with an elementary lemma.

Lemma 1. Let G be a finite field of subsets of X, G a group, p a G-valued charge on

G, and A G S. Then there is a G-valued charge on (G, A) which is an extension of p.

Proof. We shall exhibit a charge t on 9J)( X) which extends p. Since G is a finite

field there is a partition^,, A2,.. .,Ak of A consisting of nonempty sets from 6 such

that G is the collection of all possible unions of sets from this partition. Fix points

x¡ E Ai for /' = 1,...,«. For any A E X, if we define t(A) = 2X eÀ p(A¡), then t is a

G-valued charge on 6J(X) which extends p.

Theorem 2. Let G be a compact T2 topological group. Let p be a G-valued charge

defined on a field G of subsets of a set X. Then p can be extended to a G-valued charge

on2x.

Proof. Let A G ß- We shall show that p can be extended as a G-valued charge to

(G, A). Then the extension to 2X follows by the usual transfinite argument. Let

% = (Q,A).
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Let G* be the set of all functions defined on ® taking values in G and equipped

with the product topology. Then G is a compact T2 space. For any field <>D C 6A, let

L<¡¡) be the set of all elements of G* which are additive on 6D, i.e.,

L„p=      H     {tGG*:t(CU/)) = t(C) + t(/))}.
CDei

CC\D= 0

Then clearly L„p is a closed subset of G .

For any finite field ^ C G if we define

M.T= (t G L(eM>: t(5) = p(B)forall5 G f}

then A/vT is a closed subset of G* and is nonempty by Lemma 1. Also the family

{Ma;: ?Fis a finite subfield of G) has the finite intersection property. Since G® is

compact, there is a t G M<s¡ V?Fc (? which is a G-valued charge on % extending p

because U (ÍF, /I ), the union over all 'S, equals %.

Remark 3. Theorem 2 is also valid for any algebraically compact group (see [2] for

the definition and properties). If G is algebraically compact there is a compact T2

topological group H containing G and K, a subgroup of //, such that G © K = //.

Considering p as an //-valued charge, by the previous case, we extend p to an

//-valued charge t on 2X. Now, if we compose t with the projection to G from //, we

get a G-valued charge which is an extension of p. Since every divisible group is

algebraically compact, Theorem 2 is also valid for any divisible group, a fact which

can also be proved otherwise.

Remark 4. If p is a charge on a field of sets 9> taking values in a compact T2

topological group, then p need not be exhaustive (i.e. p(An) need not converge to 0

for every pairwise disjoint sequence of sets An, n> 1, from %). Let G = {0,1}N° be

the countable product of the discrete two-point topological group {0,1}. Let gx,

g2,... be a countable dense subset of G. Let <$ be the finite cofinite field on the set

of positive integers. Define p on 'S by

/*(*)=  2 &   if 5 is finite,
/es

= 2 Si   if B is cofinite.
i&B

Then p is a charge on % taking values in a compact T2 group which is not exhaustive.

Thus Theorem 2 does not follow from the many extension theorems which followed

[5] (see for example Theorem 3 of [4]).

Remark 5. Since any finite group is a compact T2 group, Theorem 2 holds for any

finite group. If G is the two-element group {0,1}, or more generally, if every element

of G is of order 2, we can prove Theorem 2 without resorting to topological

arguments. This is so because a function p on a field G into G is a charge if and only

if p(A AB) = p(A) + p(B) V/4, B E G. Hence, a function p on a field G into G is a

charge if and only if it is a group homomorphism from G considered as a group with

A.

As a final result, we shall generalize Lemma 1 by replacing the finiteness of G with

the finiteness of the range of p.
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Theorem 6. Let G be a group. Let ¡xbe a G-valued charge on a field G of subsets of

X whose range is a finite set. Then p can be extended as a G-valued charge to any field

® containing Q.

Proof. Let p(Q) be the range of p on G. Let H be the subgroup of all elements of

G of finite order.

Case (i). p(G) C //. In this case the subgroup K generated by p(6) is finite and p

can be considered as a A"-valued charge on G, and by Theorem 3 there is a A-valued

charge on % extending p.

Case (ii). p(G) tH,i.e.,p(G)-H¥= 0.Let

9= {{Ax,...,An):A,^ 0,A,EG,p(A,) G H

fox i — l,...,n and A¡ C\ Aj— 0 for /' ¥=j].

Then if {Ax,. ..,An) E <7, for any fixed a <2 H, \{i: p(A;) = a}\<\p(G)\, so

n <|p(ß)f. Let {AX,...,A ) E 9j be such that p is the maximum possible n for

collections {Ax,...,An} in <7. We shall show that p^ ne can be extended to Aj n ®

as a G-valued charge.

Let us concentrate on A,. Consider

<S = {B EAX: B E%andp(B) & H).

Then (i) Ax E <S; (ii) BEC, BEC, CeS^CGÎ because if p(C) E H then

p(Ax — C) G H and p(C — B) G //, which contradicts the choice of {/!,,... ,/4p};

(iii) Ä £Î,CEÎ=^£ n CG ^because if p(B D C) E Hthenp(B - B n C) G H

and p(C - ß Pi C) G // and {5-ßflC, C - B C\ C, A2,... ,Ap) gives another

element of <7 containing p + 1 elements; (iv) 5 C j4„ B E 6 =» B G ÇJor v4, — J5 G f

and exactly one of them G 'S; and (v) 0 G 'S.

Thus fis a maximal filter in the field ^4, n G on Ax. Let us define p' on Ax D 6 by

p'(C)=p(^,)     if C C4,, C G S,

= 0 if C C/1,,C G G and CÍ 'S.

Then p' is a charge on ^4, D G and for any A E G, A E Ax, p(A) — ¡i'(A) equals

p( A — Ax) ox p(A) according as p(A) £ H or not. By (iv) this implies p(A) — p'(A)

E H for all A E G, A E Ax, or p — p' is an //-valued charge on ^4, D G with finite

range. Hence by Case (i), p — p' can be extended to an //-valued charge t, on

Ax D ÇB. On the other hand, by extending the ultrafilter Sin Ax n G to an ultrafilter

S' in Ax n % and by defining t2 on Ax D $ by t2(/1) = p(/l,) if A E S' and

r2(A) = Qif A $.%',A E Ax Pi %, we obtain a charge on y4, D "3d extending p'. Now

t, + t2 is a G-valued charge on Ax n ® extending p ^ ne.

Since this procedure can be adopted to each of the A/s, we obtain our result.

Remark 6. The extension we have obtained in Theorem 6 also has finite range.
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