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SOME FUNCTION SPACES OF CW TYPE

PETER J. KAHN '

Abstract. J. Milnor's result on the CW type of certain function spaces map( X, Y)

is extended to allow the case in which X has a finite A-skeleton and w¡Y = 0, i > k.

One conclusion is that the self-equivalence monoid of any Postnikov stage of a finite

complex has CW type. Another is that the monoid of pointed self-equivalences of a

K(ir, 1) manifold has contractib!; components when tr is finitely-generated.

1. Introduction and statement of results. We shall work entirely in the category of

compactly-generated Hausdorff spaces (A:-spaces), as described in [14], unless ex-

plicit exception is noted. Thus, for example, the set mapiX Y) of all maps X -» Y

will be topologized by first endowing it with the usual compact-open toplogy and

then replacing this with the corresponding rc-topology. For another example, a (not

necessarily surjective) map of /c-spaces will be called a fibration if it satisfies the

homotopy-lifting property for all /c-spaces.

Let W denote the class of spaces having the homotopy type of a CW complex (see

[7] for basic facts about CW complexes). The purpose of this note is to prove the

following:

1.1. Theorem. Let X and Y be connected spaces in W and n a nonnegative integer

such that:

(a) X is homotopy-equivalent to a CW complex with finite n-skeleton, and

(b)77,F = OJori > n.

Then map^, Y) belongs to W.

We say that a space satisfying condition 1.1(a) has «-finite type. Path-connected

spaces satisfying 1.1(b) will be called (n + l)-co-connected. In [16, 17], C. T. C. Wall

gives an algebraic characterization of spaces in W that have «-finite type. Examples

of spaces in W having «-finite type, for all «, include: finite complexes, finitely-

dominated complexes, nilpotent spaces with finitely-generated homology groups,

and connected spaces with finite fundamental group and finitely-generated higher

homotopy groups.

Received by the editors December 16, 1982.

1980 Mathematics Subject Classification. Primary 55P99.

Key words and phrases. Homotopy type, CW complex, function space.

ÎPartly supported by NSF Grant MCS-8201029.
© 1984 American Mathematical Society

0002-9939/84 $1.00 + $.25 per page

599



600 P J. KAHN

Theorem 1.1 will be derived as an easy consequence of the following

1.2. Theorem. Suppose that f: X0 -» X{ is an n-connected map and that Y is

(n + \)-co-connected, where XQ, Xx, and Y are connected spaces in W. Then, each

homotopy-fibre of the induced map /*: map( Xx, Y) -» map( X0,Y) is either empty or

contractible. If Y is n-co-connected, then no homotopy-fibre is empty.

The «-connectivity assumption on / means that /*: w, XQ -» ■ujX] is injective for

i < « and surjective for i < «. The homotopy-fibre $(«; z) of a (not necessarily

surjective) map h: Z0 ^> Z{, with z e Z,, is the fibre over z in the fibration

canonically associated with «. For the reader's convenience, we give the explicit

definition of $(«; z), together with related facts, in §2.

1.3. Remark. For spaces X, Y in W with nondegenerate basepoints (see 2.5), the

function space map*( X, Y) of basepoint-preserving maps X -» Y is frequently used,

rather than map^, Y). Both Theorems 1.1 and 1.2 apply, as stated, to map* in

place of map. The proofs are virtually the same as the ones we shall give for the

unpointed case. Alternatively, one can easily deduce the pointed results from the

unpointed ones by making use of the "evaluation-fibration" map(A", Y) -* Y, in

which map*( X, Y) is the fibre over the basepoint of Y (cf. 2.5).

Theorem 1.1 extends a classical result of J. Milnor [9], which implies that

map( X, Y) belongs to W whenever Y belongs to W and X has the homotopy type of

a finite complex. Although this result is extremely useful, the finiteness condition on

X is troublesome. On the one hand, it cannot be avoided entirely [9, p. 273]. On the

other hand, the condition is frequently violated by objects arising naturally in

homotopy theory: e.g., Eilenberg-MacLane spaces K(it, «), stages of a Postnikov

tower, etc. Theorem 1.1 was motivated by such examples and can be applied to them

in some cases.

To begin with, choose some Y in W of type K(G, m), m > 1, and observe that Y

is (m + l)-co-connected.

1.4. Corollary. Suppose that X is a connected space in W of m-finite type. Then

(a) map(X, Y) belongs to W, and (b) // G is abelian, then map(Z, Y) is homotopy

equivalent to a product n,10^' m which Y: is a space in W of type K(H"'~'(X; G), i).

For example, when m = 1, map^, Y) = H\X; G) X Y.

Assertion 1.4(a) is an immediate consequence of Theorem 1.1. For assertion

1.4(b), a computation of Thorn [15, p. 31], shows that map(A, Y) has the stated

singular homotopy type, and 1.4(a) implies that this is the same as its homotopy

type.

As a special case, take X to be any K(it, n) space in W satisfying one of the

following conditions.

1.5. (\)m < n;

(2) it finitely-generated, abelian;

(3) 77 finitely-generated and m = « = 1 ;

(4) -n finitely-presented and of type FPm (cf. [1]), and m > « = 1.

Then X has w-finite type, and Corollary 1.4 may be applied to it.
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Corollary 1.4 has a pointed analogue, which we do not state in general but instead

specialize to a case that may have some independent geometric interest.

1.6. Corollary. Let M be a (finite-dimensional, topological) manifold of type

K(i7,\) with 17 = 77,M finitely-generated, and let G*(M) denote the monoid of

basepoint-preserving self-equivalences of M. Then each component of G*(M) is

contractible.

Note that M belongs to W and has nondegenerate basepoints. Thus, since 1.5(3) is

satisfied, we may apply the pointed version of 1.4(a) (or of 1.1) to conclude that

G*(M) is in W. It is straightforward to compute that each component of G*(M)

has trivial homotopy groups, and so Whitehead's Theorem then gives contractibility.

1.7. Remarks, (a) The compact-open topology on G*(M) is metrizable, hence

already compactly-generated.

(b) When M has the homotopy type of a compact manifold, Corollary 1.6 is

known, proved simply by using Milnor's theorem in the above argument. However,

see the next remark.

(c) There are numerous interesting examples of K(ir,\) manifolds. For example,

these arise naturally as Riemannian manifolds of constant negative curvature, or as

classical knot complements. In fact, for every countable group 7r of finite cohomo-

logical dimension, there is a corresponding K(ir, 1) manifold [18, p. 320]. Many of

these examples do not have the homotopy type of a finite complex, even when -u is

finitely-presented.

We now apply Theorem 1.1 to Postnikov stages. Note that if a space X in W has

«-finite type, then so does X(n), its «th Postnikov stage. Thus, we have

1.8. Corollary. Suppose that X is a connected space in W having n-finite type.

Then, both map^,,, X(i)) and G(X(j)), the monoid of (unpointed) self-equivalences of

X{l), belong to Wfor alii ^n.   D

For our final application, let A' be a connected space in W of «-finite type, and let

/?,: X(i) -» X(i_X) denote the /th map in a Postnikov tower for X, i < «. Then /?,

induces a diagram:

(/OV,map( *,,,,*,,_,,)    (/»,-)*

(1.9) map(X,,.,,*,,.,) ^^ "^\ map(*„._„,*„_„)

■S    <?(*<*>)---<?(*(*-o)    ^

1.10. Corollary, (a) There exists a map a: G(X(j)) -* G(X(i_ „) completing (1.9)

(i.e., making it commute up to homotopy).

(b) Such an a is unique, up to homotopy.

(c) a is an Ax-map of monoids (in the sense of [13]).

Theorem 1.1 implies that each of the spaces of (1.9) belongs to W. Theorem 1.2

then implies that (/?,)* is a homotopy equivalence. This immediately gives 1.10(a),

(b). The proof of (c) is given in §4.
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1.11. Remarks. In the category of simplicial sets, there is a canonical and

functorial Postnikov-tower-construction, due to J. Moore (e.g., see [8]), which yields

almost immediately the existence of a simplicial analogue of a. This analogue is a

homomorphism of simplicial monoids.

In the topological category, the Postnikov-tower-construction is neither canonical

nor functorial, so the existence of a cannot be established so readily.

If we apply the topological realization functor to the simplicial analogue men-

tioned above, we do obtain a suitable a, provided that we know that G(Xfj)) has CW

type, which requires Theorem 1.1. Thus, this gives an alternative proof of 1.10(a). A

third proof will arise (also depending on 1.1) in the process of demonstrating 1.10(c)

in §4.

Note that 1.10(c) is as close as one can reasonably expect to get to asserting that a

is a homomorphism of monoids.

2. Some technical facts. This section presents the technical information needed for

the proofs of the theorems and of Corollary 1.10(c).

2.1. Definitions. Given a map «: Z0 -> Z,, set

Eh = {(z, <o) g Z0 X map(/, Z,)|«(0) = h(z)),

and define ph: Eh -» Z, by ph(z,u) = w(l). Here / is the unit interval [0,1].

Z0 X map(7, Z,) and Eh are topologized in accordance with the usual conventions

concerning the /c-topology (cf. [14]). In particular, the ^-topology on Eh coincides

with the relative topology induced by the /c-space Z0 X map(/,, Z,).

In the classical context (i.e., in which the compact-open topology is used, etc.), ph

is a Hurewicz fibration (e.g., cf. [11, pp. 99-100]). It follows easily that if we then

impose k- topologies, ph becomes a fibration in the sense we describe in the

introduction. Note that image ph is the union of all path-components of Z, meeting

image «.

The homotopy-fibre <P(«; z,) is defined to be/?^'(z,), for each z, g Z,.

We use " — " to denote homotopy-equivalence.

2.2. Lemma. Ifp: E -» B is a fibration and b g B, then p~\b) = <P(/>; b).

2.3. Lemma. Suppose that

a
A       -»       C

Y| is

B       ->       D
ß

is a homotopy-commutative diagram in which a and ß are homotopy-equivalences.

Then, for every x G B, <P(y; x) - <P(S; ß(x)).

Both lemmas are folklore in homotopy theory. The Eckmann-Hilton dual of a

special case of 2.3 is proved in [6], and another special case follows from results in

[10].
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2.4. Lemma. Suppose that p: E -* B is a fibration and ßejf. Then E g W if and

only if each p~](b) G W.

Except for our use of the /c-topology, this lemma follows immediately from results

of Stasheff [12] (more precisely, from his Propositions (0) and (12), together with our

Lemma 2.2). Stasheff s arguments remain correct in our ^-topology-context; in fact,

they may be somewhat abbreviated here.

Note that these lemmas do not require maps to be surjective.

2.5. Definitions, (a) Suppose that /: A -» X is a closed cofibration in W, and

consider the induced map /*: map^, Y) -* map(/l, Y), for any Y in W. In the

classical case (i.e., compact-open topology), this is a Hurewicz fibration [11, p. 97].

After imposing the A:-topology, it becomes a fibration in our sense. We denote the

fibre over g g map(/l, F) by mapíX Y; g). When / is an inclusion map, we may

think of map( X, Y; g) as consisting of all extensions g: X -* Y of g.

Note that if A is a point, so that, by definition, / maps onto a nondegenerate

basepoint *, then/* may be identified with the evaluation map map(A", Y) -» Y,

which sends f to f( * ).

(b) Using the above notation, suppose that (X, A) is a CW pair, A =*= 0, and/is

the inclusion map (henceforth suppressed). As above, choose some g: A -» Y and

some extension g g map^, Y; g). Finally, pick basepoints x ^ A <z X and y =

g(x) g Y. Then, g determines the structure of a Zirx(X, x)-module on irm(Y, y), for

any m > 2, which we denote by g#irmY.

In Lemma 2.6, i is any fixed nonnegative integer, and cohomology will be taken

with local coefficients.

2.6. Lemma. Assume the context of 2.5(b), and, in addition, suppose (a) the inclusion

A '>-> X is \-connected, and (b) H"(X, A; g*irn+iY) = 0, for all n + i > 2. Theft,

7r,(map(Ar, Y; g)) = 0, where the homotopy group 77, is based at g when i-> 1.

Proof. A typical element of ■n¡(map(X,Y; g)) is represented by a map <j>:

S' -» map(X, Y; g), based at g, which we may transform, by adjointness to a map <i>:

5' X X -* Y. The conclusion 77, = 0 is then seen to be equivalent to the existence, for

each <;>, of an extension ip in the diagram

«Ug=pr,4

S' X XL) D'+] X A     ->^rY

D'+l Xjf/

where pr^,: D'+] X A -» A is the canonical projection. The hypotheses imply that/

induces a 77,-isomorphism, so that \p may be defined on the 2-skeleton. Further

obstructions to this extension lie in zero groups.   D

For each i > 0, define the relative ¡-skeleton X' to be A U U {cells of X of

dimension < /). The inclusions X' ç X'+x induce maps map(Ar, + 1, Y; g) -*

mapiÂ7', Y; g) making {map(Ä\ Y; g)} into an inverse limit system.
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2.7. Lemma. Restriction induces a homeomorphism

map(X, Y; g) « lim map(F, Y;g).

i

The map induced by restriction is easily seen to be continuous and bijective, and

so the burden of proof is to check that it is open. We leave this to the reader.

2.8. Lemma. //, in the tower

P\ Pi Pj
* «- £| «- E2 «- F3 <-

of fibrations, each E¡— *, then lim Et■ ~ *.

Proof. Because each Et — *, each /?, is surjective, so that lim E¡ ■* 0. Choose

{e,} g lirnF,, and set F¡ = /?,"'(?,-_,) ç £(.. Because the fibrations are fibre-homo-

topy trivial, each F¡ = *.

We define a family of contractions «,: £, X [0, 1] -» £,, / > 1, satisfying (i)

«,(x, 0 = e,, for all (jc, t) g F, x [0,2"'], and (ii) /?,«, = «,_,(/?, X id(OI]). By the

universal property for lim (in the category of /c-spaces), the «, fit together to give a

contraction of lim£,. More precisely, lim«, is a continuous map lim(F, X [0, 1])

-» lim £,, which, when composed with the natural homeomorphism

( lim E¡) x [0,1] -» lim (E¡ X [0,1]),

yields the desired contraction. It remains to define the «,.

Define «, to be any contraction satisfying (i) for ; = 1, and suppose «. , is

defined satisfying (i), (ii) for i — j — 1. Use homotopy-lifting to obtain a map h':

Ej X [0,1] -> Ej such that h'¡ satisfies (ii) for i = j, and h'j(x, 1) = x, for all x g E¡.

Clearly, h'j(Ej X [0,2"-' + ']) ç F¡. Use the contractibility of Fj to define a deforma-

tion dt in Fj between the trivial map Ej -* (e-) and h'AEj X (2"/+ '}. Then, define «y

as follows:

(eJt 0 < t < 2"A

«y(x, 0 = Uf(*),        2-^f <2->+1,5 = 2^(r-2-0,

(«;(x,i),    2"7+1 <r< 1.

Clearly, /i ■ is a contraction satisfying (i), (ii) for i = j.   D

This completes the technical information needed for our proofs of Theorems 1.1

and 1.2. The remaining facts will be used for our proof of Corollary 1.10(c).

We shall make use of the Moore loop space AZ of a space Z, which has the same

homotopy type as the ordinary loop space and has a strictly associative loop

composition (cf. [13, p. 14]).

Consider the self-equivalence monoid G( X) of a space X in W, and let BG(X)

denote the classifying space constructed by Dold and Lashof [3].

2.9. Fact. If G(X) is in W, then there is an Ax-equivalence of monoids

G(X) = ABG(X).
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The Dold-Lashof construction produces a weak homotopy equivalence G(X) —>

ABG(X) (see [13, Theorem 4.3]). Since G(X) is in W, an argument of Stasheff [12,

p. 243], implies that BG(X) is in W, and then Milnor's theorem yields the same for

ABG(X). It follows that the weak equivalence is a homotopy equivalence. Work of

Stasheff and of Fuchs (cf. [13, pp. 33-35]) then shows that this homotopy equiva-

lence is an A ̂ -equivalence of monoids.

2.10. Fact. Suppose that X and G(X) are in W, as above. Then BG(X) classifies

A'-fibrations over spaces in W.

Stasheff [12] proves such a result, without using ^-topologies, under the assump-

tion that A" is a finite complex. The finiteness assumption insures that certain maps

in Stasheffs constructions are continuous and that G( X) belongs to W, and this is

its only use. In our case, the /c-topology will insure continuity and G(X) g W by

hypothesis. Thus, Stasheffs argument yields 2.10.

An alternative proof follows from Dold's representability theorem [2], obtaining a

space B( X) in W which classifies A'-fibrations. The assumption C7( X) g W is then

needed to verify that B(X) = BG(X).

3. Proofs of the theorems.

3.1. Theorem 1.2 =» Theorem 1.1. We may take A" to be a CW complex with finite

«-skeleton, X", and we let /: X" -» X be the inclusion. Then /*: map(A", Y) -»

map( X", Y) is a fibration. By 1.2, together with 2.2, the fibres off* are either empty

or contractible: in either case they belong to W. Since map(X", Y) g W, by

Milnor's theorem. Lemma 2.4 now gives the desired conclusion.   D

3.2. Proof of Theorem 1.2. The proof proceeds in a number of steps.

3.2.1. We observe first that we may assume that (AT,, X0) is a CW pair with X0

containing the «-skeleton of A", and/the inclusion A"0 -» A",. For in the general case,

one can always find such a CW pair (Kt, K0) and a homotopy-commutative square

fi f
A",       -      Kt

in which each a¡ is a homotopy-equivalence. Apply map (-, Y) to this square, and

then apply Lemma 2.3 to the result.

Henceforth, we assume that the above reduction has been made. Moreover, in

light of Lemma 2.2, it suffices to verify the conclusions of Theorem 1.2 for each

honest fibre of the fibration /*: map(A",, Y) -» map(A"0, Y). Finally, we may

suppose that « > 0, because when « = 0, Y is contractible, and the result is trivially

true.

3.2.2. Case 1. A", = X0 U ̂  Dp, p > n. Choose a g map(A"0, Y). When Y is «-co-

connected, a extends over A",, so that (f*)'\a) = mapiA",, Y; a) is then nonempty.

In any case, mapíA",, Y; a) is homeomorphic to map(Dp, Y; a<¡>), which we hence-

forth denote by M, and which is the fibre over a<t> in the restriction-fibration

map(Dp, Y) -* map(Sp\ Y). By Milnor's theorem and Lemma 2.4, this fibre M
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belongs to W, so that, if it is nonempty, we need only show that 77, M = 0, for all

i > 0. But this follows from Lemma 2.6, together with the (« + l)-co-connectivity of

Y, which completes the proof in this case.

3.2.3. Case 2. Xx = X0 U , U aDp, p > n. Set <f>„ = *|Sa>-'. Then, (/T'(a) is

homeomorphic to T\amap(Dp, Y; a</>a) (cf. Lemma 2.7). Case 1 shows that each

factor in this product is empty or contractible. Hence, so is (f*)~\a).

3.2.4. Case 3. (A",, A"0) is a CW pair with cells in A", \ X0 having bounded

dimension > «. We have a filtration of A", by relative skeleta (cf. §2)

I0=rcf+Ic ■■■  c Xi = A",,

for some q < «, q < 00. Apply map(-, Y) to this filtration, obtaining a finite tower

of fibrations in which each fibre is empty or contractible, either because of 3.2.3 or

because it is a point. The total fibre over a, (f*)~x(a), if nonempty, is itself then

fibred

* = map(X',Y;a)^ map(Ä*'+1, Y; a) «- • • • <- map(X^,Y;a) = (f*)~\a)

by a tower of fibrations whose fibres are selected from the (nonempty) fibres above.

Hence, they are contractible, and an easy induction shows that (f*)~\a) is

contractible.

3.2.5. Case 4. (A",, A"0) is a CW pair such that X0 contains the «-skeleton of A*,.

When (f*)~\a) is nonempty, use 3.2.4 to obtain a (possibly infinite) tower of

fibrations

* = map(X",Y;a)*- map(Ä*,+ 1, Y; a) «- •••

in which each total space is contractible. The desired result now follows immediately

from Lemmas 2.7 and 2.8.

In light of 3.2.1, the proof of Theorem 1.2 is now complete.

4. Proof of Corollary 1.10(c). Recall that A" is a connected space in W of «-finite

type and X(j) denotes its y th Postnikov stage. When/ < «, G(X(j)) belongs to W

(Corollary 1.8), so that we may make use of Facts 2.9 and 2.10. To begin with, we

shall identify G(X(J)) with ABG(X(J)) via the Ax-equivalence of 2.9.

Now let / < « be as in the statement of 1.10. The proof proceeds by defining a

map

BG(Xi¡))ÍBG(X(i_l))

such that Aß completes (1.9) (thus giving a third proof of Corollary 1.10(a)). Aß is,

of course, an ,4^-map of monoids.

Any map a: G(Xi¡)) -» G(X(j_])) completing (1.9) is homotopic to Aß, by

Corollary 1.10(b), and this finishes the proof, because .4 ̂ -maps of monoids are

closed under homotopy [13, p. 33].

It remains to define ß with the requisite property. By 2.10, there is a universal

A"(;)-fibration EG(Xyi)) -* BG(Xyj)). Its (i - l)st Moore-Postnikov stage is an

A,,-,)-fibration over BG(X(i)), which may be classified by a map i?C7( A^)->

BG(Xu_l)) because BG(X(j)) is inW. This classifying map is/J.
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The argument that Aß completes (1.9) has two steps, whose details we leave to the

reader: (1) if/: B -* BG(X(i)) classifies the Af^-fibration/?: E -» B, verify that ß ° f

classifies the (i - l)st Moore-Postnikov stage of p. (2) When B is a suspension 1,A,

the fibration/?: E -> B is classified by a "clutching function" g: A -» G(X,i)). Using

(1), together with standard arguments, verify that the (i - l)st Moore-Postnikov

stage of p is then classified by Aß ° g. This readily implies that Aß completes (1.9)

and concludes our proof.

References

1. K. Brown, Cohomology of groups. Graduate Texts in Math., no. 87, Springer-Verlag, Berlin and New

York, 1982.

2. A. Dold, Halbexacte homotopiefunktoren. Lecture Notes in Math., vol. 12, Springer-Verlag, Berlin

and New York, 1966.

3. A. Dold and R. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J.

Math. 3 (1959), 285-305.
4. Martin Fuchs, A modified Dold-Lashof construction that does classify H-principal fibrations, Math.

Ann. 192(1971), 328-340.

5._The functor [, Y] and loop fibrations, I, Michigan Math. J. 14 (1967), 283-287.
6. P. J. Hilton, Homotopy theory and duality, Gordon & Breach, New York, 1966.

7. A.Lundell and S. Weingram, The topology of CW complexes. Van Nostrand, Princeton, N. J., 1969.

8. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, no. 11, Van

Nostrand, Princeton, N. J., 1967.

9. J. W. Milnor, On spaces having the homotopy type of a CW complex, Trans. Amer. Math. Soc. 90

(1959), 272-280.
10. Y. Nomura, On extensions of triads, Nagoya Math. J. 27 (1966), 249-277.

U.E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

12. J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246.

13. _, H-spaces from a homotopy point of view. Lecture Notes in Math., vol. 161, Springer-Verlag,

Berlin and New York, 1970.

14. N. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152.

15. R. Thom, L'homologie des espaces fonctionnels, Colloque de Topologie Algébrique, Louvain, 1956,

G. Thone, Liège, 1957, pp. 29-39.
16. C. T. C. Wall, Finiteness conditions on CW complexes. I, Ann. Math. 81 (1965), 56-69.

17. _, Finiteness conditions on CW complexes. II, Proc. Roy. Soc. Edinburgh Sect. A 295 (1966),

129-139.

18. _, Group actions on manifolds, Topology of Manifolds (J. Cantrell and C. Edwards, eds.),

Markham, Chicago, 111., 1970, pp. 319-333.

Department of Mathematics, Cornell University, Ithaca, New York 14853


