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REALIZING DIAGRAMS IN THE HOMOTOPY CATEGORY
BY MEANS OF DIAGRAMS OF SIMPLICIAL SETS1

W. G. DWYER AND D. M. KAN

ABSTRACT. Given a small category D, we show that a D-diagram X in

the homotopy category can be realized by a D-diagram of simplicial sets iff a

certain simplicial set rX is nonempty. Moreover, this simplicial set rX can be

expressed as the homotopy inverse limit of simplicial sets whose homtopy types

are quite well understood. There is also an associated obstruction theory. In

the special case that D is a group (i.e. D has only one object and all its maps

are invertible) these results reduce to the ones of G. Cooke.

1. Introduction.

1.1. Summary. Let D be a small category. The aim of this note then is to obtain

necessary and sufficient conditions in order that a D-diagram X in the homotopy

category can be realized by means of a D-diagram of simplicial sets.

This is done by constructing a simplicial set rX, which is nonempty iff X can

be so realized. To get a hold on the homotopy type of rX, one notes that rX is the

homotopy fibre of a map between a simplicial set ir~1cX which classifies certain

D-diagrams of simplicial sets associated with X and which was studied in [5], and

a simplicial set cX which classifies similar D-diagrams in the homotopy category.

As the homotopy types of 7r_1cX and cX can be expressed as homotopy inverse

limits of simplicial sets whose homotopy types are quite well understood, the same

can therefore be done for rX.

The existence of realizations is also equivalent to the existence of liftings of cer-

tain maps between diagrams of simplicial sets and there is an associated obstruction

theory. In the special case that D is a group (i.e. D has only one object and all

maps of D are invertible) these results reduce to the ones of G. Cooke [2].

1.2. Notation, terminology, etc. We will rely heavily on the notation, terminol-

ogy and results in [5]. In particular:

(i) The division of a category. Let D be a category and, for every integer n > 0,

let n denote the category with the integers 0,..., n as objects and with exactly one

map i —► j whenever i < j. The division of D then is the category dD which has

as objects the functors n —► D (n > 0) and in which the maps (Ji: ni —> D) —»

(J2: n2 —> D) are the commutative diagrams:

n2 -♦ m

Ji\ /Jx

D

(ii) Simplicial sets. The category of simplicial sets will be denoted by S. Many of

the simplicial sets used in this note are nerves of categories which are not necessarily
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small, but are readily verified to be homotopically small in the sense of [3, §2]. As

explained there, this does not really matter, i.e. one can "do homotopy theory"

with them as usual.

(iii) Categories of diagrams. If C is a category and D is a small category, then

we denote by CD the category of D-diagrams in C (which has as objects the

functors D —¡> C and as maps the natural transformations between them). The

diagram category SD admits a closed simplicial model category structure in which

the simplicial structure is the obvious one and in which a map X —> Y G SD is

a weak equivalence or a fibration iff, for every object D G D, the induced map

XD -► YD G S is so.

(iv) Homotopy inverse limits. As [1, Chapter XI] homotopy inverse limits only

have homotopy meaning when applied to fibrant diagrams, we often have to replace

a given diagram Y G SD by a weakly equivalent fibrant one such as, for instance,

Ex°° Y, where Ex°° denotes the functor of [8]. To simplify the notation we will

write Yf instead o/Ex°° Y.

(v) The homotopy category. This is the category ho S obtained from S by local-

izing with respect to (i.e. formally inverting) the weak equivalences. The resulting

projection functor will be denoted by -k: S —> ho S and we will use the same symbol

for the induced functors it: SD —> (hoS)D.

(vi) We do not distinguish in notation between a small category and its nerve.

2. A classification result for diagrams. In preparation for our realization

results (§3) we investigate here the following.

2.1. Classification problem for diagrams. Given a category C and a small cate-

gory D, call (in the notation of 1.2) two objects X, F G CD conjugate if, for every

integer n > 0 and every functor J: n —> D, the induced n-diagrams J*X and J*Y

are isomorphic. The problem then is, given a diagram X G CD to classify the

isomorphism classes of the conjugates of X. Of course one can do this, in a rather

trivial manner, by means of

2.2. The classification complex cX of a diagram X G CD. This is the nerve

(1.2(h)) of the subcategory of CD which consists of the conjugates of X and all

isomorphisms between them.

Clearly this definition implies

2.3. PROPOSITION. Let C be a category, D a small category and X G CD.

Then

(i) there is an obvious 1-1 correspondence between the isomorphism classes of the

conjugates of X and the components of cX, and

(ii) for every conjugate Y of X, the corresponding (see (i)) component of cX has

the homotopy type of K(autY, 1), where aut F denotes the group of automorphisms

of 7.

To get a better hold on the homotopy type of the whole classification complex

cX one needs

2.4. The classification diagram c<¿dX of a diagram X G CD. This is the dD-

diagram (1.2((i)) which consists of the classification complexes cJ*X, where J runs

through all functors n —> D (n > 0).

The main result of this section is given in Theorem 2.5.
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2.5. THEOREM.   LeíXGCD.  Then the natural map [1, Chapter XI, §4]

cX = limdD cdDX -4 holimdD cdDX

is a weak equivalence.

2.6. COROLLARY [1, CHAPTER XI, 7.2]. The components of cX are in a

natural 1-1 correspondence with the elements of the set lim^TriQpX).

2.7. REMARK. Theorem 2.5 has the same form as Theorem 3.4(iii) of [5] and

hence admits the same variations [5, §§3-5].

The proof of Theorem 2.5 uses the following lemma, the proof of which is lengthy

but straightforward and will be left to the reader.

2.8. LEMMA. Let E be a small category which is inverse (i.e. Eop is direct

[4, §4]). Then the category SE admits a closed model category structure in which a

map X —► Y G SE is a weak equivalence or a cofibration iff, for every object E GE,

the induced map XE —> YE G S is so. Moreover, if Y G SE is fibrant with respect

to this model category structure, then Y is fibrant in the usual sense (1.2(iii)) and

the natural map lim    Y —» ho lim    Y is a weak equivalence.

PROOF OF THEOREM 2.5. We first deal with the case that D is a direct [4,

§4] category. Let sdD be the subdivision of D, i.e. [4, §5] the category obtained

from dD by turning all "degeneracy maps" (i.e. triangles as in 1.2(i) in which the

top map is onto) into identity maps. As D was assumed to be direct, the projection

s: dD —> sdD admits an obvious cross section t: sdD —> dD. Moreover, sdD is an

inverse category and hence (2.8) the natural map

cX = limsdD t*cdr>X ■*■♦ ho\jmsdD t*cdDX

is a weak equivalence. The desired result (for D direct) now follows readily from

[5, 6.6, 6.11 and 9.3].
To complete the proof one uses essentially the arguments of [5, 8.1].

3. The realization results.  We start with formulating

3.1. The realization problem. Given a small category D and a diagram X G

(hoS)D (1.2(v)), define a realization of X as a pair (Y, f) such that Y is an object

of SD and / is an isomorphism /:7rY ^ X G (hoS)D (1.2(v)) and define a weak

equivalence between two such realizations (Y,fy) and (Z,fz) as a weak equivalence

g:Y —» Z G SD (1.2(iii)) such that (ng)fz = /y- Our realization problem then is

to find necessary and sufficient conditions in order that X have a realization and

to classify the weak equivalence classes of such realizations.

An obvious solution to this problem is provided by

3.2. The realization complex rX of a diagram X G (ho. S)D. This is defined as

the nerve (see 1.2(ii)) of the full subcategory of the over category it { X (1.2(v))

generated by the realizations of X, i.e. the pairs (Y, f) for which the map /: ttY —>

X G (ho S)D is an isomorphism.

An immediate consequence of this definition is

3.3_ Theorem.  LeiXG(hoS)D. Then

(i) X can be realized iff the realization complex rX is nonempty, and
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(ii) there is an obvious 1-1 correspondence between the weak equivalence classes

of the realizations of X and the components of rX containing them.

To get some hold on the homotopy type of rX, let cX be as in 2.2 and let, as

in [5, 1.4], 7T_1cX denote the nerve of the subcategory of SD which consists of the

diagrams Y G SD such that 7rY G (hoS)D is conjugate (2.1) to X, and all weak

equivalences between them. Theorem B of Quillen [10] then readily implies

3.4. PROPOSITION. Let X G (hoS)D. Then rX is the homotopy fibre of the
projection map tt~1cX —> cX, over the component of cX containing X.

To describe the homotopy types of the components of rX let, for a diagram

Z G SD which is both fibrant and cofibrant (1.2(iii)), haut Z be its simplicial

monoid of self-weak equivalences [5, §2] and let hautn Z C haut Z be its simplicial

monoid of restricted self-weak equivalences, i.e. the maximal simplicial submonoid

which has as its vertices the self-weak equivalences Z —* Z which, for every object

D GD, induce a map ZD —> ZD G S that is homotopic to the identity. An easy

consequence of 3.4 and [5, 2.3] then is

3.5. THEOREM^Let X G (hoS)D and let (Y,f) be a realization ofX. Then
the component of rX containing (Y, f) has the homotopy type of "a classifying

complex for the restricted self weak-equivalences ofY," i.e. the homotopy type of

the classifying complex [9, p. 87]. W hautn. Z, where Z G SD, is any diagram which

is fibrant and cofibrant and weakly equivalent to Y.

To express the homotopy type of the whole realization complex rX in terms of

more easily accessible simplicial sets we need

3.6. The realization diagram rd£>X of a diagram X G (hoS)D. This is the dD-

diagram (1.2(i)) which consists of the realization complexes rJ*X, where J runs

through all functors n —► D (n > 0).

Using 2.5, 3.4, [5, 3.4(iii)] and [1, Chapter XI, 5.5] one then readily proves

3.7. THEOREM.   Let X G (hoS)D.  Then the natural map (1.2(iv) and (vi))

rX = limdD rdDX -» ho limdD(rdDX)^ = horn*0 ((dD } -), (rdDX)^)

is a weak equivalence.

Moreover, one has as in [5, 5.1]

3.8. VARIATION. Let X G (hoS)D, let g:dD -» E be a functor between small
categories and let u G SE be a fibrant diagram such that rdT>X is weakly equivalent

to the pull back diagram g*u. Then the realization complex rX is weakly equivalent

to the function complex (1.2(vi)) hom   ((g J. — ), u),

To show that the realization problem is equivalent to a lifting problem denote by

v:(dD | -) -> cdDX the vertex of homdD((dD j -),cdDX) = ho limdD cdDX

for X G (hoS)D, which corresponds to the vertex of cX — limdD c¡¡dX given by

X itself, let 7r_1CdDX denote the dD-diagram which consists of the simplicial sets

7r_1cJ*X, where J runs through all functors n —* D (n > 0) and let

n~1cdr>X ■ä* (7r_1cdDX)' -^» cdoX

be a factorization of the projection into a trivial cofibration and a fibration it'.
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Then 2.5 and 4.2 imply

3.9. THEOREM. Let X G (hoS)D. Then X has a realization iff there exists a

dotted arrow which makes the following diagram commutative:

(n~1cdr>X)

w
(dD j -)     -±*        cdDX

There are, of course, associated

3.10. OBSTRUCTIONS. The lifting problem of 3.9 is of the form considered in [7,

3.7]. The obstruction theory outlined there thus applies, with obstruction cocycles

lying in the groups Zn+1((dD | -);nn(7r-1cdDX)), n > 2.

3.11. REMARK. One can generalize 3.9 and 3.10 in the same manner as 3.7 was

generalized to 3.8. For example, if X G (ho S)D and D is a group (i.e. D has only

one object D and all maps in D are invertible), then, using the argument of [5,

5.3], one readily recovers the result of G. Cooke [2] that the realization problem for

X is equivalent to the lifting problem

(WhmtY)f

I
D     -»    Äi>0hautY,l)

where Y is any fibrant simplicial set such that -kY = XD G ho S.

We end with observing

3.12. REMARK. Using the results of [6] one can obtain similar realization results

for diagrams indexed by small simiplicial categories.
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