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ON NILPOTENT AND SOLVABLE MALCEV ALGEBRAS

ERNEST L. STITZINGER

ABSTRACT. Solvable and nilpotent Malcev algebras are investigated in the

spirit of extending results from Lie algebras. The first section presents a proof

of Engel's theorem with the Jacobson refinement and some consequences. The

second part deals with conjugacy of Cartan subalgebras and consequences.

In his recent paper on Frattini subalgebras, A. A. el Malek observes that Cartan

subalgebras exist in solvable Malcev algebras. He mentions that a technique used in

the Lie algebra case by D. W. Barnes carries over to the present setting. A purpose

of this note is to investigate the behavior of Cartan subalgebras in solvable Malcev

algebras. A main tool is Engel's theorem for Malcev algebras. The existence of

this important result is known, but a complete proof is not easily found in the

literature. Moreover, it is not stated under the conditions used by Jacobson in

his refinement of Engel's theorem in the Lie algebra case (see [8, p. 33]). Hence,

a second objective of this paper is to prove Engel's theorem with the Jacobson

refinement and to investiage some consequences which are extensions of results due

to Jacobson and to Barnes in the Lie case.

Background material on the theory of Malcev algebras is found in the funda-

mental papers of Sagle [10] and Kuzmin [9].

1. Engel's theorem. Recall that a Malcev algebra A is a nonassociative alge-

bra which satisfies x2 — 0 and (xy)(tz) = ((ty)z)x + ((yz)x)t + {{zx)t)y + {{xt)y)z.

The algebras in this paper will be finite dimensional over a field of characteris-

tic not 2. For x G A, Rx will denote the right multiplication. If M is a vector

space, a representation of A on M is a linear mapping S: A —► C(M) such that

S(xy)z = SxSySz — SzSxSy — SyzSx + SySzx and M is called an A-module. We

consider these modules to be two sided under the rule ma = —am. Let X be a

subset of A. MX^ will denote the set of all (... (mxi).. .)xn where m <E M and

Xi € X. Also let MXl°! = M. X is said to act nilpotently on M if there exists an

integer n such that MXl"' = 0. For the smallest such n, there exists z G Mil""1',

z ^ 0 but zX = 0. Note that X acts nilpotently on M if and only if its linear

span also acts nilpotently on M. A multiplicative set in A is a subset of A which

is closed under multiplication. We now turn to a Malcev algebra version of Engel's

theorem with the Jacobson refinement [8, p. 33]. It should be noted that in the Lie

algebra case it is not assumed that the module is faithful. An interesting formula

due to A. A. el Malek [4, Lemma 2.1] will be used in the proof.

THEOREM 1 (ENGEL'S THEOREM). Let A be a Malcev algebra, M a faithful
A-module and U a multiplicative set in A which spans A.   Suppose that Sx is
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nilpotent for each x G U where S is the representation of A on M. Then A acts

nilpotently on M and A is nilpotent.

PROOF. We begin by showing that the assumptions translate to the yl-module

B = M + A. Let m > 4 dim M. Let z € M, x G A and y G U. By Lemma 2.1
of [4], zS^xym+i-j = h(m)z[S(xym),Sy] where h(m) is a scalar and xym stands for

x(Ry)m. By repeated applications of this result

k=m+l-j

z&(xym + 1) — / ; ^k,j,mz\by) b(xy3)\by)

i+k=m-\-l—j
fe=0

for fixed j > 2 dim M where Ckj,m is a scalar. Let j — 2 dim M. Then the right-

hand side is 0, hence S^m+i) = 0 and xym+1 = 0. Hence Y acts nilpotently on A

and then also on B for each y G U. We now need to show that U (hence A) acts

nilpotently on B and then both assertions in the theorem will follow.

We construct a maximal multiplicative subset V of U such that V, and hence

its linear span, acts nilpotently on B. There are subspaces of A which are the

span of multiplicative subsets of U and which act nilpotently on B. For example,

any single element from U spans such a subspace. From these subspaces, let W be

one which is maximal. The multiplicative subsets of U whose span in W have a

maximal element V by Zorn's lemma. Now any multiplicative subset X of U which

contains V properly cannot be contained in W. Then its span contains W properly

and, hence, cannot act nilpotently on B. Hence V is the desired set.

If V = U, then the result holds. Hence suppose that V ^ U. Since V acts

nilpotently on B it also acts nilpotently on U. Hence there exists fc > 0 such that

UV^-1^ % V but UVW Ç V. Therefore choose a G UV^~^ Q U such that a <£ V.

Then aV Ç V. We claim that the multiplicative subset T — {a,V} of U acts

nilpotently on B which is a contradiction. This is shown by constructing a chain

of subspaces of B such that T acts nilpotently on the factors. Since BV^ — 0,

W — {x G B; xV = 0} ^ 0. Now n{m(ax)) = -m(a(xn)) - a(x(nm)) -x(n(ma)) +

{an){xm) = 0 for all xeW, and all n,m&V. Hence V{V(aW)) = 0 and V{aW) C

W. If V(aW) = 0, then aW Ç W and since V annihilates W, T acts nilpotently on

W. Suppose that V(aW) ^ 0. Then a(m(xa)) = —a(a(mx))—x(a(am)) + (ma)(xa)

shows that V(aW) is a-invariant, and since V annihilates V^aW^), T acts nilpotently

on V(aW). Hence there exists a T-invariant subspace B\ of B on which T acts

nilpotently. Considering T acting on BjB\ allows the process to be completed by

induction.

COROLLARY 1. Let A be a Malcev algebra, U a multiplicative set in A which

spans A, and Rx nilpotent for all x G U. Then A is nilpotent.

PROOF. If Z is the center of A, then A/Z acts faithfully on A. Hence the result

follows from the theorem.

Using Corollary 1, several results of Jacobson [7] on automorphisms and deriva-

tions of Lie algebras extend to the present case. The proofs also extend, hence are

omitted.

COROLLARY 2. A Malcev algebra A is nilpotent if it admits one of the following

types of operators:
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1. an automorphism of prime period with no nonzero fixed points,

2. an automorphism none of whose characteristic values are roots of unity,

3. a nonsingular derivation when the characteristic of A is 0.

In the Lie case, the next result is due to D. W. Barnes [1]. The proof is omitted

since it is the same as in the Lie algebra case.

COROLLARY 3. Let A be a Malcev algebra. Then A is nilpotent if and only if

each maximal subalgebra of A is an ideal in A.

Following the same pattern, a nilpotency characterization dealing with normal-

izers is obtained even though normalizers are not necessarily subalgebras.

COROLLARY 4. A Malcev algebra is nilpotent if and only if each proper subal-

gebra is contained properly in its normalizer.

The next corollary has applications to the conjugacy of Cartan subalgebras. It is

a result which holds for most of the important classes of algebras which are defined

by identities. Let N be an ideal of A and let U(A,N) be the associtive subalgebra

of the linear transformations of A which are generated by all Rx, x G N.

COROLLARY 5. Let N be an ideal in A and U a multiplicative set in N such

that Rx acts nilpotently on A for each x G U, and suppose that N is the linear span

ofU. Then U(A,N) is contained in the radical ofU(A,A).

PROOF. Let K be the kernel of the natural representation of N acting on A.

Since K is in the center of JV, K > N and N/K act faithfully on A. Hence N

acts nilpotently on A by Engel's theorem and U(A, N) is nilpotent. Let W = {x G

A; xU(A,N) = 0} ^ 0. Now ({xa)m)n — -({nx)a)m - ((mn)x)a — {{am)n)x +

(mx)(na) = 0 for all x G W, a G A, n, m G N. Hence N{N[AW)) = 0 and

N{AW) Ç W. If N{AW) = 0, then AW Ç W <màW is A-invariant. Suppose

N(AW) t¿ 0. Then a(m(xb)) = -b{a{mx)) - x{b{am)) - m{x(ba)) + (mb)(xa) G

(AW)N for all m G N, b, a G A and xeW. Hence A(N(WA)) C N(WA) and
N(WA) is A-invariant. Hence we obtain an A-invariant subspace S\ of W on which

N acts trivially. Working on A/Si yields an A-invariant chain 0 C Si C • • • C Sk =

A. Take a — Ryi ■ ■ ■ RVj where at least one yi G N. Then o annihilates each factor

and the ideal D of U(A, A) generated by U(A, N) has the same property. Hence

Dk = 0 and the result holds.

2. Cartan subalgebras. D. W. Barnes has shown [2] that if A is a self-

centralizing minimal ideal of a solvable Lie algebra L, then A is complemented in

L and all complements of A are conjugate. This result is quite a useful tool in

showing other conjugacy results and a Malcev algebra version would be welcome.

However, centralizers of ideals are not necessarily ideals and inner derivations take

on a more complicated form in Malcev algebras. Nevertheless, an extension of

Barnes' result does exist. In order to show it, some notation is needed. Let M

be a Malcev algebra and A an ideal in M. Recall that the centralizer of A in

M is defined as Cm[A) = {x G M: Ax = 0}. For any subalgebra B of M,

let coreM(B) be the largest ideal of M which is contained in B. Recall also that

D(a, b) = R(ab) +RaRb — RbRa is a derivation of M for all a,bG M. The derivation
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algebra generated by all these D(a,b) is called the algebra of inner derivations.

Consider

exp(D(o,6)) = >    -j—

n=0

which is well defined if D(a,b) is nilpotent and M has characteristic 0. It is also

well defined if D(a, b)n — 0 for all n > characteristic (M). Recall that J(x, y, z) =

(xy)z + (yz)x + (zx)y is called the Jacobian.

THEOREM 2. Let M be a solvable Malcev algebra and A a minimal ideal of

M. Suppose that corejvf{Cm{A)) = A. Then A is complemented in M and all

complements of A are conjugate under an automorphism of the form I + D(x,a)

where x G M and a G A.

PROOF. Let B/A be a minimal ideal in M¡A. Thus, B/A is abelian since M is

solvable. Then BA > M by Lemma 4.3 of [4], and BA ^ 0 since corejw (Cm (A)) —

A.. Hence BA = A and B is not nilpotent. Hence let x G B such that Rx is

not nilpotent. Now BRX Ç A and M(RX)2 Ç A. Hence M0(x) + A = M where

Mq{x) and Mi(x) are the Fitting null and one component of Rx acting on M. Since

M0(x) is a subalgebra of M and M0(x) ^ M, it follows that M0(x) D A = 0. Then

A — Mi(x) and Mq{x) is a complement. Let V be another complement to A in M.

Then x — c + v, cgA, vGV. Now xA — A, hence x(xA) = A and there exists

a G A such that x(xa) = —c/2. Then x + 2x(xa) = x — c = v. Now xD(x, a) =

J(x,x,a) + 2xii(XQ) = 2x(xa), since J(s,s,t) is always 0. Hence x(I + D(x, a)) = v.

Now D(x, a)2 = 0, hence / + D(x, a) is an automorphism of M which takes Mq{x)

onto MQ(v). Also v(vV) Ç u(uM) Ç A, hence u(u^) Ç /InV =0. Therefore

V Ç M0(t>). But Mfj(x) ^ M, hence Mq{v) complements A and M0(t;) = V.

Let if be a subalgebra of M. ii is called a Cartan subalgebra if H is nilpotent

and H is the Fitting null component of H acting on M. Cartan subalgebras exist

in Malcev algebras over an infinite field [9] and in all solvable Malcev algebras [4].

The following three results are shown as in the Lie algebra case, hence the proofs

are omitted.

LEMMA 1. Let H be a nilpotent subalgebra of M. H is a Cartan subalgebra if

and only if H = Nm(H) where Nm{H) is the normalizer of H in M.

The next two lemmas are extensions of results on Lie algebras due to D. W.

Barnes [3].

LEMMA 2. Let H be a Cartan subalgebra of M and A an ideal of M. Then

H + A/A is a Cartan subalgebra of M ¡A.

LEMMA 3. Suppose A is an ideal of M and A Ç K Ç M. Suppose that K/A

is a Cartan subalgebra of M/A and H is a Cartan subalgebra of K. Then H is a

Cartan subalgebra of M.

LEMMA 4. Let A be an abelian ideal of M such that M/A is nilpotent. If H

and K are Cartan subalgebras of M, then H and K are conjugate under an inner

automorphism of M of the form exp(^¿=1 D(x¿,o¿)) where x¿ G M and o¿ G A

fori = l,...,s.
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PROOF. Note that exp(D(x,a))exp(D(y,b)) = exp(D(x,a) + D{y,b)) when

x, y G M and a, b G A. Suppose that B is a nonzero ideal of M which is prop-

erly contained in A. By induction H + B/B and K + B/B are conjugate under

exp (J2 D(x~i,(ii)). By the note at the beginning of this paragraph, we may assume

that H + B = K + B. Iî H + B = M, then 0 ¿ H n A is an ideal in M. Hence by

taking B CHnA, H = H + B = K + B. Then K + B is a Cartan subalgebra of

M, hence K = K + B and H = K. Hence we may assume that H + B ^ M. Then

the result holds by induction.

Now consider the case when A is minimal and H and K are complements of A

in M. By Theorem 2 the result holds if J = coreM(CM(A)) = A. Hence suppose

J contains A properly. Now J C\H contains a minimal ideal B of M. By induction

K + B/B is conjugate to H/B under exp(J^ D(j/¿,c¿)) where j/¿ G M, c, G A.

Then if + S = H exp (J^ £>(?/¿,c¿)). Now K + B must be a Cartan subalgebra,

hence K + B = K and the result holds.

If iV is a nilpotent ideal of M, then U(M,N) is a nilpotent ideal of U(M,M)

by Corollary 5. Hence D(m,n) is a nilpotent derivation for all n G iV, m G

M. If M is a characteristic 0 or if D(m,n) has nilpotency index less than the

characteristic of the base field, then exp(£)(m,n)) is well defined. Let I(M,N)

be the group of all automorphisms generated by all exp(Z?(m, n)) where D(m,n)

satisfies the conditions in the above sentence. We consider the case when N = Mw,

the intersection of the terms in the lower central series of M where the nth term

Mn, in the lower central series of M, is the space spanned by all products of n

elements from M. Note that if A is an ideal in M, then Aw is also an ideal in M

since ((AiAj)Ak)M Ç A¿+J+fe_i is easily verified. Finally if M is solvable and of

characteristic 0, then Mw is nilpotent [9, Corollary 3].

THEOREM 3. Let M be a solvable Malcev algebra and let H and K be Cartan

subalgebras of M. Suppose that if M is of characteristic p^O, then U(M, Mw)p~1

= 0.  Then H and K are conjugate under I(M, Mw).

PROOF. We assume that Mw ^ 0 and use induction on the dimension of M.

Let A be a minimal ideal of M. Then H + A/A and K + A/A are conjugate

under I (M/A, (M/A)w). Each element of this group is induced by an element of

I(M, Mw). Hence we may assume that H + A = K + A. If H-\-A^M, then H and

K are conjugate under I((H + A), (H + A)w) and the result holds. If H + A = M,

then H and K are conjugate under I(M, A) by Theorem 2.

The final results describe relations between Cartan subalgebras and other sub-

algebras in solvable Malcev algebras.

THEOREM 4. Let Mw be abelian. Then Mw is complemented in M and all

complements are conjugate under an automorphism of the form exp(^ .D(x¿,a¿))

where x¿ G M and a% G Mw. The complements of Mw are precisely the Cartan

subalgebras of M.

PROOF. Let H be a Cartan subalgebra of M and M = H + Mi be the Fitting

decomposition of M with respect to H. Hence Mi = J2heH M(Rh)n where n =

dimM. Now M{Rh)n+1 = M{Rh)n and MiH C Mi yields that MiH = Mv

Then Mi(RH)n = Mi, hence Mt Ç Mw and M = H + Mw. Now Mw = MMW =

(H + MW)MW = HMW, hence Mw Ç Mi. Therefore H complements Mw in M.
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Conversely, let H be a complement of Mw in M. Then H is nilpotent and let Mi

be the Fitting one component of H acting on M. As in the preceding paragraph

Mi = Mw, hence H is its own Fitting null component and it is a Cartan subalgebra.

The conjugacy part follows from Lemma 4.

Let M¿ be the intersection of all terms in the lower central series of M¿-1.

THEOREM 5. Suppose that M™ is abelian but not 0 for some n > 1 and let

H be a Cartan subalgebra of M™-1. Let Hq be the Fitting null component of H

acting on M. Then Hq is a complement of Mw in M. Furthermore if K is another

complement of M™, then K is the Fitting null component of J acting on M where J

is a Cartan subalgebra of M™"1. All complements of M™ in M are conjugate under

an inner automorphism of the form exp (J2 D(ai,bi)) where ai G M and bi G M™.

PROOF. Let S = M™-1 and T = M™. By Theorem 4, the Cartan subalgebras

of S are precisely the complements of T in S. For each such H, the Fitting null

component of H acting on M must complement T. If K is another complement of

T in M, then J = K n S complements T in S, hence is a Cartan subalgebra of S.

Clearly the null component of J in M is K. Finally since J and H are conjugate in

S, their null components are conjugate in M under the same inner automorphism.

THEOREM 6. Let M = N(M) + H where H is a subalgebra of M and N(M)
is the nilpotent radical of M. Then every Cartan subalgebra K of H is of the form

H DC where C is a Cartan subalgebra of M and C contains the M-normalizer of

K. Furthermore, C is the only Cartan subalgebra of M which contains K.

PROOF. Let K be a Cartan subalgebra of H. For each x G M, let Mx be the

Fitting null component of Rx acting on M and let S = HxeK Mx. Since K is

nilpotent, K Ç S and 5 is a subalgebra. We claim that S is a Cartan subalgebra

of M and S f) H = K. lî y j^ S, then there exists x G K such that y £ Mx and

then xy £ Mx. Hence xy <£ S and y g" Nm{S). Hence S — Nm(S).

Now K Ç S (IH and we assume that this inclusion is proper. Then each x G K

acts nilpotently on the vector space SC\H/K, hence there exists a nonzero subspace

of S n H/K which is annihilated by K. Hence there exists an element of S fl H

which is not in K but is in Nm{K), a contradiction. Hence S fl H = K.

Now we show that S is nilpotent. First we claim that K + N(M) = S + N(M).

Since K + N(M) Ç S + N(M), we assume that the inclusion is proper. Using the

same argument as in the preceding paragraph, a contradiction is reached. Hence

K + N(M) = S + N{M) and S = S n (K + N{M)) = K + [S n N{M)). Now
S fl N(M) is a nilpotent ideal in S and each element of K induces a nilpotent

linear transformation of S. Hence S is nilpotent by Engel's theorem. Also the

M-normalizer of K is contained in 5.

Finally, suppose that F is another Cartan subalgebra of M which contains K.

Since F is nilpotent, F Ç Ç\xeK Mx = S. If F ^ S, then F is properly contained

in Ns{F) since S is nilpotent. But this contradicts F = Nm(F). Hence F — S.

It is interesting to note the role played by Fitting null components in the last

theorems. They are playing the role of the (relative) system normalizers of P. Hall

in his classic development of solvable groups [5, 6].
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