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ON SUMMABILITY OF FOURIER SERIES AT A POINT

G. D. DIKSHIT

ABSTRACT. In this paper summability of Fourier series by a regular linear

method of summation determined by a triangular matrix, has been studied and

various results—some known and some new—on Cesàro and Nörlund summa-

bility have been deduced. A convergence criterion has also been obtained.

1. Let C = (cn}k), k — 0,1,2,..., n, be a triangular matrix and let

n

tn = 2_^Cn,kSk,

fc=0

where {sk} is a given sequence of numbers. If tn —» s as n —» oo, {sn} is called

summable (C) to s. In this paper we assume cn^k > 0 for fc = 0,1,2,..., n, and

Efc=o cn,k — 1- Then a necessary and sufficient condition for regularity of the

method (C) is

lim cn k = 0   for each k.

In the case

cn,k = Aan-_i/Aan,        a > 0,

where {A£-1} is determined by the identity

oo

(l-x)-a = J2^n-1Xn (N<1),
0

the method (C) reduces to the well-known Cesàro method (C,a). For

Cn,k=Pn-k/Pn, Pn = Po = Pi +-h p„ > 0,

the method (C) reduces to the Nörlund method (N,p). In the case pn = l/(n + 1),

the Nörlund method (N, l/(n + 1)) is also known as the harmonic method.

Let / be a Lebesgue integrable periodic function with period 27t and let

1 oo oo

f(x) ~ ^a0 + ^2(an cosnx + bn sinnx) = ^An(x).

We write

4>(t) = \{f(x + t) + f(x-t)-2f(x)},
çt n

$(t)=        \(t>(u)\du    and    sn(x) = V" Ak(x).
Jo n
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Let
fe

t^n(."'J =   / j Cn,n — m

m=0

and, for u > 0, define Cn(u) = Cn([u}), where [u] is the greatest integer function.

Throughout the paper K is used to denote an absolute constant, not necessarily

the same at each occurrence.

2. We establish the following

THEOREM. Let {cn,k} be nondecreasing with respect to k. Let \ be a posi-

tive function defined over (0, oo) such that as n —* oo, (i) n\(n) — 0(1) and (ii)

¡™ \(u)Cn(u) du = 0(1). Then if $(t) = o(x(n/t)), as t —► 0+, the series EA„(x)

is summable (C) to f(x).

3. Proof.  We have that {cn>k} is nonnegative and nondecreasing in k. Hence,

n

(n - k)cntk <      ̂ 2     Cn,m < 1-

m=fc+l

Thus for each fixed k, cn>k —> 0 as n —> oo, that is, (C) is a regular method.

In view of the fact that the convergence of Fourier series at a point is a local

property of the generating function, we may take <f>(t) = 0 over [6,n], where 0 <

S < 7T. We choose 6 such that $(<) = o(x(n/t)) for t G (0,6). Let

n

tn(x) = ^CnifcSfc(x).

0

Then we need to show that tn(x) — f(x) = o(l) as n —> oo.   After the Dirichlet

integral, for n > tt/6,

where

As

we get

« If6
tn(x) - f(x) = Vcn,fcsfc(x) - f(x) = -        4>(t)L(n,t)

= -\ I       + f     \ ~li+h,    say,
*   [Jo Jw/nj

ri    ¿s     V^ c„,fcsin (fc + \)t
L(n,t) = > .   )xA

n

\L(n, t)\ < it ^2 (* + §) cn,k < 7T (n + i),

dt

III < \n +
1 \   f/n

df = o(nx(n)) = o(l),

as n —» oo.

Next, in view of the order estimates of McFadden [4, Lemma 5.11],

b

/   . Cn,r, -fee
i(n — k)t

fc—a

< KCn(rt/t),
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where 0<a<6<oo,0<i<7r, and n a positive integer, we obtain

|I2|  < K   i      MWnWt)

Jw/n t
dt

"/*    W)\Cn(«/t)M , v f6 m)\cn(n/t)_dt

f^Jir/ik+l) l J-K/r I

where r is a positive integer such that n/r < 6 < ir/(r + 1). As

w/fc fir/k
ri«   w)\Cn(*it) dt = \Cn(«/t)mr     + r

/»/(fc+1) ¿ L * Jir/(fc+l)        Jir/(k+l

o(Cn(r)) + 0(nX(n)C7n(n))+Jft: /"
V 7r/n

o(l) + o(j   X(u)Cn(u)du\ =o(l).

*(t)Cn(*/t)dt

/(fc+1) *

$(t)gn(7T/0 dt

/"

This completes the proof of the Theorem.

4. The four corollaries in this section follow as a result of our Theorem.

Corollary l (Hardy [2]). Let a > 0. If $(t) = o(t), as t -> 0+, then
EA„(x) is summable (C,a) to f(x).

The case a = 1 is the classical result of Lebesgue (see [10, Theorem III 3.9]).

PROOF. Let x(u) = n/u and cn>fc = A"zl/A%. Then x(*/t) - t and

as n —* oo.

cn(u) = £ cn,n-m = £*£- = _£L.

m=0 m=0        n n

Thus nx(n) = 7r and

í   x(u)Cn(u)du = 0(n-a) Í  u"'1 du = 0(1)

Hence all the hypotheses of the Theorem are satisfied and the result follows.

Corollary 2. (i) (Siddiqi [6]). If<b(t) = o(i/log(27r/r.)), as t -> o+, then

E An(x) is summable (N, l/(n + 1)) to f(x).

(ii) //$(t) = o(í/{log(37r/í)loglog(37r/í)}), os t -> 0+, then J2An(x) is sum-

mable (N, l/{(n + 2) log(n + 2)}).

(iii) If $(t) = o(t/{\og(kir/t)log2(kiT/t)---logg(kir/t)})) as t ~* °+> then

EAn(x) is summable (N,l/{(n +k)log(n +k)-■ ■\ogq_1(n +k)}), to f(x), where

logrx = log(logr_1x), for r > 2, and k is such that logq k > 0.

PROOF. To deduce this corollary, note that, in case (i) taking

7T l/(n + l-fc)
^) = ^Ioi2Ü    and    C-fc = Eonl/(fc + D'
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we obtain

and thus

X(ir/t) = t/\og(2TT/t),

nx(n) = 7r/log2n = o(l)    as n —» oo,

Cn(U) = ¿l/(m + l)/¿l/(fc-rl),

j\(u)Cn(u)du = 0(^[\du = 0(l)

Thus the hypotheses of the Theorem are satisfied and the result follows.

The choice of x, cn,k, Cn(u), etc., is similarly suggested in each of the cases (ii)

and (iii), and the proof of the corollary is completed.

COROLLARY   3.   Let {pn}  be a nonnegative,  nonincreasing sequence and let

p(í/t)=p([l/t])andP(í/t) = P({í/t}).

(i) (SINGH [7]). If (a) $(i) = o(i/log(7r/t)) as t -» 0+, and

(b)EÏ(Pk/k\og(k + l)) = 0(Pn),
then Y^An(x) is summable (N,p) to f(x).

(ii) (PATI [5]). // (c) $(t) = o(t/P(l/t)) as t -* 0+, and

(d) log n = 0(Pn),

then J2-An(x) is summable (N,p) to f(x).

(iii) (SINGH [8]). //(e) $(i) = o(p(l/t)/P(l/t)), as t -► 0+, then ^An(x) is

summable (N,p) to f(x).

REMARKS. In their theorems both Pati and Singh have assumed an extra hy-

pothesis on {Pn}:  aPn —► oo, as n —» oo".

PROOF. Since {pn} is nonnegative and nonincreasing,

(n + l)pn < po 4- Pl +-1- pn = Pn-

Therefore npn/Pn = 0(1), as n —> oo. Taking cn¡k = pn-k/Pn we obtain

Cn(u) = P(u)/Pn.

Case (i). Take x(u) = h f°r u S (0,2) and x(u) = t/(« logu) for u € [2, oo).

Then forte (0,1/2),

X(*/t) = í/log(7T/í),

and, for n > 2,

nxH =7r/logn.

Thus

nx(n) — °(1)    as n —> oo.
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Also

/    x(u)Cn(u) du=-± + —       —i-¿- du
Jx Pn        Pn J2     u fog"

Pi TT   ^i   fk + 1    P(u)      .

Pn        Pn^Jk U fog U

2

<-« Ê E
,Pn/-y*log(fc+l)

= 0(1)    as n —* oo,

and the hypotheses of the Theorem are satisfied.

Case (ii). Take x(«) = l/uP(u). Then

nx(n) = 1/P(n) = 0(1),    as n —» oo,

and

r x(«)c„(«) du=-i r i dU=^=o(i).
yi mi 7i   u mi

Cose (iii). Let x(u) = p(u)/P(u). Then

«X(») = nPn/Pn = 0(1),

as shown earlier, and also

j71 x(u)Cn(u)du = i- j\(u)du = 0(1).

Thus in each of these cases, the hypotheses of the Theorem are satisfied and the

corollary follows.

Corollary 4 (A Convergence Criterion). Letx be a decreasing func-

tion such that f™x(u)du = 0(1). If $(t) = o(x(7r/i)), as t ^ 0+, then ^An(x)

converges to f(x).

In particular, if xi^A) denotes any of the following:

(i) t/(\og(2^/t))^,

(ii) í/{log(fc7r/í)(loglog(/c7r/í))1+£},... where e > 0 ona1 A; ¿s appropriately cho-

sen, then 3>(i) = 0(x(n/t)) implies that E An(x) converges to f(x).

REMARKS. This result may be compared with the corresponding classical results

on nonconvergence of a Fourier series at a point of continuity, e.g. see [10, Theorem

VIII 2.4, p. 303]. Thus, in the suggested particular cases, e > 0 may not be replaced

by e = 0. For other alternate convergence criteria involving the case e = 0, see [3,

Theorems 3, 10; 9, Theorems 2, 3].

We shall need the following result for a proof of Corollary 4.

LEMMA [1].   Let {pn} satisfy the Kaluza conditions:

for n > 0,    p„ > 0    and   pn+i/pn < pn+2/pn+i < 1.
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Then if {Pn} is bounded, the method (N,p) is ineffective, i.e. only convergent se-

quences are summable by the method.

PROOF OF COROLLARY 4. We first note that as x is decreasing,

x(u)du = 0(l).

Now choosing cn¡k = pn_k/Pn such that {p„} satisfies the requirements of the

Lemma (e.g. {pn} may be taken to be one of the sequences

{(n + l)(n + 2)¡,     \2^)'     { (n + 2)(log(n + 2))^' £>°

etc.), we see that the hypotheses of the Theorem are satisfied, and thus we complete

the proof.

In the case of the particular instances cited, we note that

$(í)=0(í/(log(27r/í))1+£),    así^0+

implies that

$(í)=0(í/(log(2/í))1+2/£),    así^0+,

and similarly in the other cases, and then the results as claimed follow.
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