
proceedings of the
american mathematical society
Volume 92, Number 2, October 1984

SINGULAR FUNCTIONS AND DIVISION IN H°° + C

PAMELA B. GORKIN

Abstract. In this paper it is shown that for each inner function u, there exists a

singular inner function S which is divisible in ffx + C by all positive powers of u.

Introduction. In this paper, we continue the study of division in H°° + C begun by

Guillory and Sarason. We let H°° denote the space of boundary functions for

bounded analytic functions in the open unit disk D and C denote the space of

continuous, complex valued functions on 3D. We let Va denote the usual Lebesgue

space with respect to Lebesgue measure. It is well known that H°° + C is a closed

subalgebra of L°°. The space H°° (or Hx + C) will be identified with its analytic (or

harmonic) extension to D.

C. Guillory and D. Sarason began the study of division in Hx + C by determin-

ing a criterion for deciding whether an Hx + C function is divisible by all positive

powers of a unimodular H°° + C function [3]. In the same paper, the question of

finding, for each inner function u, a singular inner function which is divisible in

Hx + C by all positive powers of u, is posed. We shall answer this question

affirmatively. The techniques used to prove this are a combination of the techniques

used in [1 and 3]. As in [1], our main tools are interpolating Blaschke products and

the Chang-Marshall Theorem. A sequence {zn} of distinct points in D is called an

interpolating sequence if there exists 8 > 0 such that

n
j*k

ZJ

1 - */**
SsS>0,       k = 1,2,3,....

It is well known [4, p. 199] that if a sequence of points {zn} of the open unit disk is

an interpolating sequence, then

00

(*) L(i-htl)<°°.
k-l

A Blaschke product with a zero sequence which is an interpolating sequence is called

an interpolating Blaschke product.

The Chang-Marshall Theorem states that every closed subalgebra of L00 which

contains Hx is generated by Hx and some collection of conjugates of interpolating

Blaschke products.
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From the proof of the Chang-Marshall Theorem, it is easy to show that the closed

subalgebra generated by H°° and the conjugate of one inner function is actually

equal to the closed algebra generated by H°° and the conjugate of a single

interpolating Blaschke product. We refer the reader to [2, Chapter IX].

The Main Theorem. In this section we prove the following theorem:

Main Theorem. For each inner function u, there exists a singular inner fucntion

which is divisible in H°° + C by all positive powers ofu.

The proof of the Main Theorem requires three lemmas. Lemmas 1 and 2 below

reduce the problem to the case in which u is an interpolating Blaschke product. We

then use Lemma 3 to complete the proof of the Main Theorem.

Lemma 1. Let u be an inner function. There exists an interpolating Blaschke product

b such that if an inner function v is divisible in Hx + C by all positive powers ofb, then

v is divisible in Hx + C by all positive powers ofu.

Proof. It follows from (the proof of) the Chang-Marshall Theorem that there

exists an interpolating Blaschke product b such that the closed subalgebra of L°°

generated by Hx and ü is actually equal to the closed subalgebra generated by H°°

and the conjugate of the interpolating Blaschke product b. Let v be an inner function

divisible by all positive powers of b. It is easy to see that v must be divisible in

Hx + C by all positive powers of u.

The maximal ideal space of H00, denoted M(HX), is the set of nonzero complex

multiplicative linear functionals on /Y00. With the weak-* topology, M(H°°) is a

compact Hausdorff space. We identify D with its natural image in M(H°°).

Lemma 2. Let b be an interpolating Blaschke product with zero sequence [zn). If S is

a singular inner function such that S(zn) -* 0, then S is divisible by all positive powers

ofb.

Proof. For each positive integer n, let gn be an analytic nth root of S. Thus

g„" = S, g„ 6 Hx and, for each n, g„(zm] -» 0 as m -* oo. Suppose m g M(Hx) ~ D

and m(b) = 0. By [4, p. 205], we have m g {z„}. Hence m(g„) = 0. It follows from

Lemma 1 of [1] that gnb g Hx + C. Thus gfi" g Hx + C for each n and Si" g

Hx + C, as desired.

The techniques used to construct the singular function S are similar to those used

in [3]. The construction will be done on the upper half-plane.

Lemma 3. Let {zn} be an interpolating Blaschke sequence. There exists a singular

inner function S satisfying S(zn) -* 0.

Proof. If A = {n: Rez„ > 0} is finite, then we need only consider the set {z„}

such that Re z„ < 0. Assume there are infinitely many z„ such that Re z„ 3> 0. For

those n, let w„ = i((l - z„)/(l + z„)). Then lmwn > 0 and, from (*), we have

E„Imwn < oo.   Let   {bn}   be  a  sequence  of  positive  real  numbers  such  that
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L„bn(lmwn) < oo and lim„^00¿>„ = oo. Let w'n = Re vv„ + ib„lmwn and tn = Rew„

Finally, let u be the Poisson integral of the measure p = E„(Im w¡/)8t, that is

bn{lmwn)
-~2--dp(t) = v£

\2
~(x-tY+y2 '  n  (x-t„Y+y2

Then

p dp(t) = y bnímw„

^-ool + í2 nl+{tnf

and since £„/?„ Im wn/(l + tl) < E„6„Imiv„ we have£„6„Imw„/(l + r2) < oo.

/, \ /^ »        n     v-       bn(lmwn)(lmwm)
(b) «(ReWm,ImW|II) = E--^-"2    / m'2

n  (Reu»m- tn)   +(Imwm)

so we have

bm(lmwm)
M(Re wm,lmwm) >-^-f-- = bm.

(Rewm- RewJ   +(Imwm)

Let ü be the harmonic conjugate of u, and let 51, = e"(u+'") denote the singular inner

function for the upper half-plane corresponding to ju. Then |S,(wm)| = \e~u(Wm)\ <

e~bm/1. Hence 5,(ivm) -> 0 as m -» oo. Letting S2(z) = Sx((i - z)/(i + z)) we

obtain a singular inner function such that S2(zn) -* 0 as n -♦ oo and n g A.

Suppose now that {n: Rez„ < 0} is infinite. Let wn = /((l + zn)/(l - z„)) for all

n such that Rez„ < 0. Again, Imivn > 0 and E„Imw„ < oo. Repeating the process

above, we obtain a singular inner function S3 such that zn with Re z„ < 0 we have

S3(zn) -> 0 as n -» oo. If we let S = S2S3,tnen $ satisfies the desired conditions.

To establish the Main Theorem, let u be an inner function. Choose an interpolat-

ing Blaschke product b satisfying the conditions of Lemma 1. Use Lemma 3 to

obtain a singular function S satisfying the conditions of Lemma 2. Then b"S g H°°

+ C for all positive integers n. By Lemma 1 we see that S is divisible by all positive

powers of u.
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