A CONTINUUM X WHICH HAS NO CONFLUENT WHITNEY MAP FOR 2^X

WŁODZIMIERZ J. CHARATONIK

ABSTRACT. An example is shown of a continuum X which has no confluent Whitney map for 2^X . This answers two problems asked by Nadler [N].

Nadler has asked in [N, (14.63) and (14.64), pp. 468 and 469] whether for every continuum X there exists a monotone (or an open) Whitney map for 2^X . We answer both these questions in the negative by showing an example of a continuum X which has no confluent Whitney map for 2^X .

THEOREM. There exists a rational continuum X in the plane which admits no confluent Whitney map for 2^X .

PROOF. Let S denote the unit circle in R^2 . Define functions f and g mapping H into R^2 by

$$f(t) = (1 + 1/t)\exp(it)$$
 and $g(t) = (1 - 1/t)\exp(-it)$,

and put M = f(H) and L = g(H). The space $X = M \cup S \cup L$ is a rational continuum in R^2 (cf. [N, (16.35), p. 558]). We show there is no confluent Whitney map from 2^X into $[0, +\infty)$.

Let μ be an arbitrary Whitney map for 2^X . Put $\mathscr{B} = \{B \in 2^X : \operatorname{diam}(B) \ge 1\}$. Thus \mathscr{B} is a compact subset of 2^X . Let $t_0 = \inf\{\mu(B) : B \in \mathscr{B}\}$ and note $t_0 > 0$. Consider the segment $[0, t_0/2] \subset [0, \mu(X))$. We show that there exists a component of $\mu^{-1}([0, t_0/2])$ whose image under μ is not the whole segment. To this end put $p_k = f(2\pi k) \in M$ and $q_k = g(2\pi k) \in L$ for $k \in \{1, 2, \ldots\}$. Observe that the sets $\{p_k, q_k\}$ tend to the one-point set $\{1\} \subset S$, so $\mu(\{p_k, q_k\})$ tends to zero as k tends

Received by the editors November 21, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54C10, 54F20.

Key words and phrases. Confluent, continuum, hyperspace, Whitney map.

to infinity. Hence there exists a number s such that $\mu(\{p_s, q_s\}) \in [0, t_0/2]$. Let $\mathscr C$ be the component of $\mu^{-1}([0, t_0/2])$ which contains the point $\{p_s, q_s\}$ of 2^X , and assume on the contrary that $\mu(\mathscr C) = [0, t_0/2]$. Put $\mathscr T = \{A \in 2^X : A \cap M \neq \varnothing \neq A \cap L\}$. Note $\{p_s, q_s\} \in \mathscr C \cap \mathscr T$ and $\mathscr C \setminus \mathscr T$ is nonempty (because it contains a one-point set according to the assumption). Denote by $\mathscr L$ the component of $\mathscr C \cap \mathscr T$ containing the point $\{p_s, q_s\}$. Define mappings $m: \mathscr T \to H$ and $l: \mathscr T \to H$ putting $m(A) = \min f^{-1}(A)$ and $l(A) = \min g^{-1}(A)$, and note $m(\{p_s, q_s\}) = l(\{p_s, q_s\}) = 2\pi s$. Observe that $\mathscr L$ has a limit point in $\mathrm{bd}(\mathscr C \cap \mathscr T)$, i.e., there exists a sequence of points A_n of $\mathscr L$ such that $m(A_n) \to +\infty$ or $l(A_n) \to +\infty$ as $n \to +\infty$. Consider a function arg: $\mathscr L \to R$ defined by $\mathrm{arg}(A) = m(A) + l(A) - 4\pi s$. Thus arg is a continuous function, and $\mathrm{arg}(\{p_s, q_s\}) = 0$. Note that $\mathrm{arg}(A_n) \to +\infty$ as $n \to +\infty$, so the image of $\mathscr L$ under the function arg is an unbounded from the right and connected set in R containing the point 0. Thus there exists a set A_0 in $\mathscr L$ such that $\mathrm{arg}(A_0) = \pi$. Denote $a = m(A_0)$ and $b = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ we have $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$ and $a = l(A_0)$. Putting $a = l(A_0)$ and $a = l(A_0)$ and a =

$$\rho(x, y) = \left[(1 + 1/a)^2 + (1 - 1/b)^2 - 2(1 + 1/a)(1 - 1/b) \cdot \cos(a + b) \right]^{1/2},$$

where ρ is the euclidean metric in the plane. Now $\arg(A_0) = \pi$ implies $a + b = 4\pi s + \pi$, whence $\cos(a + b) = -1$, so all terms in the square brackets are positive, and therefore $\rho(x, y) > 1$. Hence $\operatorname{diam}(A_0) > 1$, thus $A_0 \in \mathcal{B}$, and therefore $\mu(A_0) \ge t_0$, a contradiction to the fact $A_0 \in \mathcal{L} \subset \mathcal{L} \subset \mu^{-1}([0, t_0/2])$. The proof is complete.

COROLLARY. There is neither a monotone nor an open Whitney map for 2^X , where X is the continuum described above.

REMARKS. Note the following. (1) Each Whitney map for the hyperspace 2^X of an arbitrary continuum X is weakly confluent (see [N, (0.45.4), p. 22] for the definition) as a mapping onto a segment. (2) Each Whitney map for the hyperspace C(X) of all subcontinua of an arbitrary continuum X is monotone and open (see [N, (14.44), p. 453]).

REFERENCES

[N] Sam B. Nadler, Jr., Hyperspaces of sets, Dekker, New York and Basel, 1978.

Institute of Mathematics, Polish Academy of Sciences, Topological Seminar (Wrocław Branch), pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Current address: ul. Beniowskiego 16 M.2, 53-210 Wrocław, Poland