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NONCONTRACTIVE UNIFORMLY LIPSHITZIAN SEMIGROUPS
IN HILBERT SPACE

DARYL TINGLEY1

ABSTRACT. It is shown that any fc-Lipshitzian, k < n/2, noncontractive

commutative semigroup acting on a closed bounded convex set in Hubert space

has a common fixed point.

1. Introduction. Let 7 = {fa\a € A} be a semigroup of mappings of a metric

space (M, d) into itself. The semigroup 7 is said to have a fixed point if there exists

xo G M with fa(xo) = xq for all a G A, and 7 is said to be uniformly /c-Lipshitzian

if for each x, y G M and each a G A,

d(fa(x),fa(y)) < kd(x,y).

7 is said to be left reversible if every two right ideals of 7 have a nonempty inter-

section (i.e. for /, g G 7, f7(lg7 ^ 0). Commutative semigroups, and in particular

{/": n = 0,1,...} for some function /, are left reversible.

In [4] Goebel, Kirk, and Thele showed that if X is a Banach space with 6(1) > 0

(where 6 is the modulus of convexity function) then there is a constant k'0 > 1

such that any left reversible uniformly fc-Lipshitzian semigroup 7, k < fc0, acting

on a closed bounded convex set K in X has a fixed point. Clearly there is a

maximum choice of fc0 which we call fco- In [4] it was shown that for Hubert space

(M), \/5/2 < kr¡ < 2. Downing and Ray [3] improved this estimate of fco, for Hubert

space, by showing that \[2 < ko while in [1], Bâillon has an example (presented

here in §2) which shows that fco < tt/2. (Lim [6 and 7] has improved the results of

[4] for the Lp spaces.)

In this note we show that under the additional assumption that J be a noncon-

tractive (i.e. \\x - y\\ < \\f(x) - f(y)\\ for each / G 7 and all x, y G K) uniformly

(7r/2 — ¿)-Lipshitzian (6 > 0) commutative semigroup, then 7 has a fixed point.

The example of Bâillon, showing that fco < 7r/2, is noncontractive (this is proven

in §2 of this paper), hence 7r/2 is the exact value of fco in the case of noncontractive

commutative semigroups. We note that the example in [4] showing that fco < 2 is

also noncontractive.

2. In this section we present Baillon's example [1] of a noncontractive uniformly

7r/2-Lipshitzian semigroup of mappings of a closed bounded convex subset of I2

which contains no fixed point.
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Let S be the shift operator. That is, S((xi,x2,...)) = (0,xi,x2,- ■■)■ Let

ei = (1,0,0,...) and K = {x G I2: x = (xx,x2, ■ ■ ■), \\x\\ < 1, x% > 0, i = 1,2,...}.

Define / by

fix) = cos ^-||x||j ei +sin (^-||i||j -—-.

Several properties of / are immediate,

(2.1) ||/(x)|| = l    for all i GÄ".

(2.2) If ||x|| = 1     then fix) = S(x).

(2.3) fn(x) = Sn~1f(x)    (from 2.1 and 2.2).

If f(x) = x(x G K) then x — f2(x) = Sf(x) = S(x). Since S(x) — x implies that

x => 0, and f(0) = (1,0,...), / has no fixed points. Once it is estabished that

(2.4) ||x - y\\ < \\f(x) = f(y)\\ < n/2\\x - y\\,        x, y G K,

the semigroup 7 = {fn \ n= 1,2,...} is readily seen to be noncontractive uniformly

7r/2-Lipshitzian with no fixed points. Note that the second inequality of 2.4 is strict,

so 7r/2 is a strict Lipshitz constant for 7.

The fact that / is noncontractive has not been mentioned in the literature, we

believe, and as it shows that the constant tt/2 in our main theorem is the "best

possible", we present a brief proof (due to the referee).

PROOF THAT 7 IS NONCONTRACTIVE. We readily compute that

||/(x) - /(y)||2 - \\x - y\\2 = (cos (pz||) - cos (¡IMl))2

x-y\\2
■     ft,.    ,,\ y       .     /7T ..    .A

sinUw)-esinV2ll2/l1)

2-2cos(|||x||)cos(|||y||)-(||x||2 + ||2/||2)

+2 (w ù) {|NI M "sin ^l|2")sin ^ll2/")}

The well-known inequality sinr > 2i/7r (for 0 < t < %/2) shows that the expression

in curly brackets is less than or equal to 0, thus replacing (x/||x||,j//||2/||) by one,

we get

\\m - /(y)f - II* - VW2 > 2 - 2cos |(||x|| - Hz/H) - (||*|i - IMI)2

= 4sin2^(||x||-|M|)-(||a:||-|H|)2.

A final appeal to sin t > 2t/n shows that this is nonnegative.    D

3. In this section H shall denote a Hilbert space, K a closed bounded convex

set of M, S a subset of K, f: K —> K a noncontractive function, and 7: K —» K a

noncontractive commutative semigroup. We show that if 7 is uniformly (ít/2 — 6)-

Lipshitzian, 6 > 0, then 7 has a fixed point.

Let S Ç K. Then 5 is bounded, as K is. For x G~H define

(3.1) r(S,x) = sup{||x - a||: s G S},
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(3.2) r(S) = inî{r(S,x): xGX},

and let c(S) be the unique point of M such that r(S,c(S)) = r(S). Equivalently,

c(S) is the unique point of M such that B(c(S),r(S)) 3 S (where B(x,r) denotes

the closed ball about x of radius r). The point c(S) is called the Chebyshev center

of S. When no confusion arises, let r(x) = r(S,x), r = r(S) and c = c(S). It is

well known and easily shown (cf. [5]) that c(S) lies in the closed convex hull of S

(denoted co~(S)) and hence is in K.

LEMMA 3.1.   For xG X, r2 + \\c - x\\2 < r2(x).

PROOF. To simplify notation, assume that c = 0. Then \\y\\ < r for all y G S.

For a contadiction, suppose that

2 + ||   ,,a -r2(x)

211*11
and let z — ex/||a;||. We claim, then, that r2(z) < r2 — e2. To see this let y G S,

and consider the two cases (y, x/||x||) > £ and (y,x/||x||) < e. In the first case a

straightforward calculation shows that \\y — z\\2 < r2 — e2. For the second case the

cosine law shows that

||j/ - z||2 = \\y - x\\2 - \\x - z\\2 +2(y-z,x- z).

It can now be shown that (y — z,x — z) < 0, hence

\\y-z\\2<r2{x)-\\x-z\\2.

Using the definition of £ this then yields

\\y-z\\2<r2-e2.

Thus r2(z) < r2 — e2. However this contradicts the definition of c, and hence

the lemma has been established.    D

LEMMA 3.2.   For every S Ç K, sup{r(T): T C S and T is finite} = r.

PROOF. Assume there is an r' < r such that r(T) < r' for every finite set T c S.

The finite intersection property then shows that (~]xeS B(x,r') ^ 0, implying that

r = r(s) < r' a contradiction.    D

THEOREM 3.3 (Kirszbraun). Let {xt: i G 1} and {y,: i G 1} be sets in U

and {r¿: i G I, ri > 0} be a set of real numbers such that

\\xi-xj\\ < Wvi-yjW      (¿,iel).

Then

P| B(xt, n) = 0    implies f] B(yt, r¿) = 0.
tel iei

Proof. [8, p. 47].

LEMMA 3.4.   For each S C K, r(S) < r(f(S)).

PROOF. For a contradiction, assume that £ = r(S) - r(f(S)) > 0. By the

definition of r(S),

Ç}B(s,r(S)-e) = <ô.
ses
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As / is noncontractive,

H/Oi) - /02)|| > ||«i - s2\\    for all ai,*a e S.

Kirszbraun's theorem implies that

0= Ç]B(f(s),r(S)-e)=Ç]B(f(S),r(f(S))) = {c(f(S))}
ses ses

leading to a contradiction.    D

LEMMA 3.5. Assume that S Ç K satisfies f(S) Ç S. Then r(S) = r(f(S))
andc(S) = c(f(S)).

PROOF. Because f(S) C S we have r(f(S)) < r(S). On the other hand Lemma

3.4 shows that r(S) < r(f(S)). Hence r(S) = r(f(S)). Now

f(S) ÇSÇ B(c(S),r(S)) = B(c(S),r(f(S))).

However c(f(S)) is the unique point in V. such that B(c(f(S)), r(f(S))) Ç f(S).

Thus c(S) = c(f(S)).    U

LEMMA 3.6. Let S Ç K satisfy f(S) Ç S. Then for each x G K, \\f(x) -
c(S)\\>\\x-c(S)\\.

PROOF. From Lemma 3.5, c(S) = c(f(S)) and r(S) = r(f(S)). Letting c =

c(S) and r = r(S), assume for some x G K that \\x — c|| > ||/(x) — c||. Let

e=\\x- c\\ - \\f(x) - c\\. Now ri8€S B(s, r) = {c}, so

4>= f]B(s,r)nB(x,\\x-c\\-e).
ses

By Kirszbraun's Theorem (Theorem 3.3)

cp = f| B(f(s),r)nB(f(x), \\f(x) - c\\) = {c}.
ses

Thus we have a contradiction, hence

||x-c|| < ||/(a;) -c||.    D

If 7 = {fa- et G A} is a commutative (or left reversible) semigroup then the set

A can be directed as follows. For a, ß G A define

a < ß    if and only if fa7 5 fß7.

Thus for each x, 7(x) = {fa(x): a G A} is a net. Also, without loss of generality

when finding fixed points, it may be assumed the identity is in 7■

COROLLARY 3.7. If 7: K —* K is a commutative semigroup of noncontractive

mappings, K a closed bounded convex set in M, and 7: S Ç K —> S then for a > ß,

\\fa(x)-c(S)\\>\\fß(x)-c(S)\\

for each x G K.

PROOF. Because fa7 3 fß7, and the identity is in 7, fß = fafv, n G A,
and as 7 is commutative, fß(x) — fn(fa(x))- The corollary follows from Lemma

3.6.    D

REMARK. This corollary is the only point in our argument where the com-

mutativity of 7 is used. If 7 were right-reversible, rather than commutative, the

corollary would be valid.
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LEMMA 3.8. For every e > 0 there is a finite subset T Ç S such that \\c(S) —

c(f(T))|| < £ for every noncontractive function f with f(S) Ç S.

PROOF. Let e > 0 be given. Lemma 3.2 shows that there is a finite subset

T Ç S with r2(S) - r2(T) < e2. Let / be an arbitrary noncontractive function

with f(S) Ç S. From Lemma 3.1, we have

r2(f(T)) + \\c(f(T)) - c(S)\\2 < r2(f(T),c(S)) < r2(S).

Lemma 3.4 shows that r(T) < r(f(T)), so

r2(T) + ||c(5)-c(/(T))||2<r2(5).

Hence \\c(S) — c(f(T))\\ < e, establishing the lemma.    G

LEMMA 3.9. Let e > 0 be given. Then there is a finite subset T Ç S such

that for every linear functional h, \\h\\ = 1, and each noncontractive function f

satisfying f(S) Ç S it is true that for some x G T,

h(f(x))-h(c(S))<e.

PROOF. By Lemma 3.8 there is a finite subset T Ç S such that for every

noncontractive function/, ||c(S)—c(/(T))|| < e. As has been mentioned, c(f(T)) G

co(/(T)), hence for some x G T, h(x) - h(c(f(T))) < 0. Thus

h(x) - h(c(S)) < h(c(f(T))) - h(c(S)) < £.    D

By an arc 7 in M (or any metric space) we mean the image of a function 7: [a, b] —>

M for some interval [a, b] of R. The length of an arc may be defined by purely metric

means, without any differentiability assumption. We refer the reader to a book on

metric geometry such as [2] for a discussion of arcs and their lengths. Let ¿(7)

denote the arclength of (the image of) 7. If / satisfies

fci||x-y||<||/(x)-/(y)||<fc2||x-2/||

and 7 lies in the domain of /, then / o 7 is an arc and

kil(i) < l(f(i)) < hl(l).

LEMMA 3.10.   Let ^(t), a < t <b be an arc satisfying

h(«)jllft(rOII
and ||7(t)|| > d, t G \a,b}.  Then the length 0/7 is at least d- 0.

PROOF. Let P be the projection of )/\{0} onto the sphere of radius d, defined

by P(x) = d ■ x/||x||. Certainly P is nonexpansive on {x G M: \\x\\ > d} so

l(P(l)) < ¿(7). However P(i) is no shorter than the geodesic on S joining P(^(a))

to P(~f(b)), whose length is at least d- 9.    D

THEOREM. Let 7 = {fa\a G A} be a commutative semigroup (with identity) of

self-mappings of a closed bounded convex set K in a Hilbert space )l. Assume that

for some 6 > 0,

\\x-y\\<\\fQ(x)-fa(y)\\<(n/2-6)\\x-y\\.

Then 7 has a fixed point.
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PROOF. Let xo G K be arbitrary, xa = fa(xo) and S = {xa\a G A}. Note

that fa(S) Ç S for all a G A. Let c — c(S), r = r(S). As mentioned earlier, c G

cö{xa: a G A} Ç K (see [5]). Let [c, xa] denote the arc {y: y — X(c)+(l—X)xa, 0 <

A < 1}. We now show that for some x G UaeAi0'1«*]' IIe ~~ /a(x)|| < (1— 6/ir)r,

for all a G A.

Clearly if r = 0, then x may be taken to be c (which is a fixed point of 7).

Thus, for a contradiction, assume that r > 0 and that sup{||c — /Q(x)||: a G A} >

(1 - 6/ir)r for all x G [}aeA[c^x»\-

Let £ > 0 be given. By Lemma 3.9 choose a finite set T Ç S such that for any

a G A, and any linear functional h, \\h\\ — 1, there is a z G T with h(fa(z))—h(c) <

e. Since LLeTi^î/] *s compact, Corollary 3.7 implies that for some n G A and for

every xG \JyeT\c,y],

îc-/,(as)|f>.(l-.|)r.

Define

h(x) = /   M0)'0    x
(j     \ll/,(e)-e||'X

and let z G T satisfy h(fn(z)) - h(c) < e. Thus

fn(c)~C        fn(z)-C
<

,||/,(ç)-c||'||/,W-c||/     {l-6/iry

Hence angle fn(c)cfn(z) ls greater than cos_1(£/(l — è/it)r) and by Lemma 3.10

£
KA[c,*})>-(i-|) reos   1

il-6Mr

As £ > 0 was arbitrary, it must be that

(3.3) Bup{/(/,lc,*]): r,GA,zGS}>(^-6-\r.

However, as ||/^(x) - fn(y)\\ < (f - 6)\\x - y\\ for all x,y G K and n G A, then for

each n G A and z G S,

(3-4) l(fÁc,z})<(l-S)\\c-z\\<(^-6)r.

Combining 3.3 and 3.4, we reach the desired contradiction, and conclude that for

some xG \JaeAlc>xa},

l|c-/a(a:)|| < (l--V    for all a G A.

Let yo G K he arbitrary and let r = r({fa(yo):  a G A}).   Assume that for

n < fc, yn has been defined so that

/ r \ n-1

(3.5) ||yn-î/n-i||<2(l--)       r
V       ""/

and

(3.6) r{fa(yn): a G A} < (l - i j   r.
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rt
Using the above argument with xq = yk-i we find a point y^ = x such that

(3.7) {/«(yfc); aGA}CB Ic({fa(yk-i): a G A}), il

and hence (3.6) is satisfied with n = fc, and

(3.8) ||yfc - c{/Q(yfc_!): a G A}\\ < (l - £)   r < (l - Í)       r

(recall we assume that 7 contains the identity). Also,

/       i \ n~1

(3.9) ||2/fc—i - c{/a(yfc_i): a G A}\\ < r{{fa{yk-i): a G A}) < 11 - - J       r.

Hence 3.8 and 3.9 together show 3.5 is satisfied with n = fc.

We conclude, using the continuity of the fa, that {yn} is a Cauchy sequence,

and its limit is a fixed point of 7■    D

REMARK. The above theorem holds for a right reversible, rather than commu-

tative, semigroup. See the remark following Corollary 3.6.
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