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ABSTRACT. This paper deals with zero-sum nonstationary stochastic games

with countable state and action spaces which include both Shapley's stochastic

games [11] and infinite games with imperfect information studied by Orkin in

[7]. It is shown that any nonstationary stochastic game with a bounded below

lower semicontinuous payoff defined on the space of all histories has a value

function and the minimizer has an optimal strategy. Moreover, two approxi-

mation theorems extending the main results of Orkin from [7] are established.

Finally, counterexamples answering in the negative some open questions raised

by Orkin [7] and Sengupta [10] are given.

1. Introduction. Before we describe our game model, let us accept some

conventions. Let N denote the set of positive integers, and R the set of real numbers.

If /, g : S —> R are functions on a nonempty set S, then f < g means that f(s) <

g(s) for each s E S. If S is a countable set, then by P(S) we denote the set of

all probability measures on the cr-algebra of all subsets of S. Finally, throughout

the sequel we shall—tacitly—assume that any countable set is endowed with the

discrete topology, and the countable product of such sets is endowed with the usual

product topology.

A nonstationary two-person zero-sum stochastic game G which we consider is

defined by a two-person stochastic control system {Sn,Xn, Yn,qn,u;n G N} where:

(i) Sn is the state space of the system at stage n G N. Sn is assumed to be a

nonempty countable set.

(ii) Xn and Yn are the action spaces for players I and II, respectively, at stage

n G N. It is assumed that Xn (Yn) is a nonempty countable (finite) set.

Let Hx = Si, Hn = Si x Xx x Yx x ■ ■ ■ x Sn, and H^ = Si x Xi x Yi x 52 x

X2 x Y~2 x • • •• Then Hn is the set of histories up to stage n G N, and iioo is the

set of all histories of the game.

(iii) {</„} is the law of motion of the system, i.e., qn : Hn x Xn xFn^ P(Sn+i)

is a transition probability such that qn(hn,xn, yn, -) is the condition distribution of

the stage of the system at stage n + 1 given the history hn G Hn and the actions

%n G Xn and yn G Yn chosen by the players at stage n.

(iv) u: Hoc —> R is the payoff function. It is assumed that u is a bounded below

lower semicontinuous (l.s.c. in short) function on H^.

The game is played as follows. The players I and II observe the initial state si G

Si of the system and choose simultaneously actions ij eli and yi £ Yj, respec-

tively. Then the result (zi, yi) is announced to both of them and the system moves
-
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to a new state s2 G S2 according to the probability distribution qi(si,xi,yi,-),

upon which I chooses x2 G X2 while II chooses y2 G F2, etc. The result of this

infinite sequence of moves is a point h — (si,xi,yi,s2,x2,y2,...) G Hx and II pays

I the amount u(h).

For each n G N, let n„ (r„) be the set of all functions (transition probabilities)

from Hn to P(Xn) (P(Yn)).

A (behavioural) strategy for player I (II) is a sequence 7r = {fn} (7 = {gn}),

where /„ G Un (gn G r„) for each n G N. We denote by II (r) the set of all

strategies for player I (II).

According to the theorem of Ionescu-Tulcea (see [3, p. 149 or 5, Proposition V

1.1]), for each pair 7r = {/«}, 7 = {gn} of strategies there exists a unique conditional

probability P7ri(si, ■) on K — Xi x Yi x S2 x X2 x Y2 x S3 x X3 x Y3 x • • • given the

initial state si such that for each cylindrical set Cn = {xi} X {yi} X ■ ■ ■ x {sn} X

{xn} x {yn} x {sn+i} x Xn+i x Yn+i x ■ ■ ■ c K we have

n

Pvr1(si,Cn) = YI fk(hk,{xk})gk(hk,{yk})qk(hk,xk,yk,{sk+i}),
fc=l

where hi = si, hk = (si,xi,yi,... ,sk), 2 < k < n.

Thus, each pair tt, 7 defines an expected payoff to player I in the game G at an

initial state si G Si to be

E(u,Tt,~j)(si) =  / u(si,h)P7V1(si,dh).

From (iv), it follows that E(u,tv,^) is a bounded below extended real-valued func-

tion of the initial state.

Define, for each si G Si,

L(G)(si) = sup inf E(u,it,i)(si)
Werner

and

U{G)(si) = inf supE(u,ir,~j)(si).
1er neX1

Then L(G) (U(G)) is called the lower (upper) value function of the game G. It is

always true that L(G) < U(G). If L(G) — U(G), this common function is called

the value function of the game G and will be denoted by Val(G).

Throughout the sequel we shall assume that there exists a strategy 7 G T such

that

(v) sup E(u,ir,"i)(si) < 00    for each si G Si.
Tren

Let e > 0 be given and suppose the value function Val(G) exists.

A strategy 7r* G II is called e-optimal for player I if

Val(G) < inf E(u,-K*,~i) + e.
-y€r

A strategy 7* G T is called e-optimal for player II if

Val(G) > sup£(u,7T,7*)-£.
Tren
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REMARK 1.1. Stochastic games were introduced by Shapley [11]. He considered

a special case of the game described above in which Sn = S, Xn = X, and Yn = Y

for each n G N and some finite sets S, X, and Y. The law of motion {</„} in

Shapley's game is stationary, that is, qn(hn,xn,yn,-) = q(sn, xn,yn, •) for each

hn = (si,xi,yi,...,sn) G Hn, xn G Xn, yn G Yn and some q: S xX x Y -> P(S).

Moreover, the payoff is accumulated over stages with a discount factor ß (0 < ß <

1), so that for each history h = (si,xi,yi,...) G H^,,

oo

(1) u(h) = J2ßn-1r(sn,xn,yn),
71=1

where r is a (payoff per stage) function on S x X x Y. (Of course, (1) is continuous

on -ffoo-) Such a game is called a discounted Markov (or stationary stochastic)

game. (For further results concerning Markov games we refer to [1, 4, 6, 8] and

the references therein.)

REMARK 1.2. Let Sn = {n} and let Xn be finite for each n G N. Then our game

reduces itself to an infinite game with imperfect information studied by Orkin in

[7]. The goal of this paper is to extend Orkin's approximation theorems for infinite

games from [7] to nonstationary stochastic games defined above.

REMARK 1.3. The game introduced here is inspired by a nonstationary stochas-

tic control system in the sense of Hinderer [3, Chapter I]. Some different nonsta-

tionary stochastic games were studied by Sengupta [10] and Schäl [9]. In the model

of Sengupta [10] the state space is an independent of time compact metric space,

the action spaces are finite, the payoff is l.s.c. on the set of all histories, but the

law of motion is stationary. Schäl has considered in [9] a game model with Borel

state and action spaces in which player I, similarly, player II, may base his decision

at any stage n on the whole history (si, s2,..., sn) of the system and on his own

previous actions only. In other words, each of the players cannot take into account

at any stage the previous choices of his opponent. Such a restriction concerning

the players does not take place in our model.

2. Finite horizon games. Let m G N be fixed and let um be a bounded below

real-valued function on Zm = Hm x Xm x Ym. Then um may be recognized as a

continuous function on H^ and it may be considered as a payoff function of some

nonstationary stochastic game in the sense of §1. Such a game is called a finite

horizon game because the payoff is decided here in the first m moves.

We have the following fact.

PROPOSITION 2.1. Every finite horizon nonstationary stochastic game satisfy-

ing (i)-(v) has a value function. Moreover, for each e > 0, player I has an e-optimal

strategy and player II has an optimal strategy.

Before we prove Proposition 2.1, let us introduce some auxiliary operators. Let

w: Zn —> R be bounded below, /„ 6 Il„, and gn G r„, n G N. Then we put

(2) (Afngnw)(hn) =   J2     J2  w(hn,xn,yn)fn(hn,{xn})gn(hn,{yn}),
XnGXr, yneYn

hn G Hn.
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Let w. -íira+i —> R be bounded below. Then we put

(3) (Qnw)(hn,xn,yn) =      J2      w(hn,xn,yn,sn+i)qn(hn,xn,yn,{sn+i}),

[hn^xn,yn) G iin x Xn x Yn.

Note that Afn9n is isotone for each fn,gn, i-c, ^4/ng„w < Afn9nv if w < v, and

A/n9n(w + c) = Afngnw + c for any constant c. Similar facts hold for Qn, n G N.

Let 7T = {/„} G n and 7 = {gn} G T. It can easily be verified that for any finite

horizon game with the payoff function um we have

(4) E(um,ir,i) = AfigiQiAhgiQ2- ■ ■ A}m_igm_1Qm^iAfmgmum.

Now we are ready for the

PROOF OF PROPOSITION 2.1. The proof proceeds by induction and is similar

to that of Lemma 3.5 from [1]. Since the payoff in an m-stage game is decided in the

first m moves, so we can restrict our attention to the first m terms of strategies only.

For the one-stage game the result follows directly from Fan's minimax theorem [2,

Theorem 2]. Fix m > 2 and suppose the result holds for every (m — l)-stage game.

Let e > 0 be given and let um be a payoff function of an m-stage game Gm. From

Fan's minimax theorem [2] we infer that

vm :=   sup      inf   Afmgmum =    inf      sup   Afmgmum,
fmen„ gmerm gmerm /m€nm

and, moreover, we can find f*t G Um and gm G rm such that, for every fm G ïlm

and gm G Tm,

(5) Afmg.mum < vm    and   vm < A/^9mMm + e/2.

Now, let Gm-i be the (m — l)-stage game where the payoff function is given

by um-i = Qm-iVm- From our induction hypothesis, it follows that Gm_i has a

value function and there exist strategies it^-i = (fx,f2, ■ ■ ■,/m-i) and 7m-1 =

(9h 02 > • • • > 9m-1) for I and II such that

(6) E{um^t,ir1'^n_1) < Val(Gm_i) < £(iim-i,<,-i,Tf) + e/2,

for every tt G n and 7 G T.

Define -K*m - (#,/},..., fm-Ufm) and 7^ = (g*x,g2, . ■ • ,&_i,0m). UsinS (4)>
(5) and the elementary properties of the operators (2) and (3), one can check that

E(u^.7r,74) <-E(tim-i,T,7m-i)    and    E(um-i,irm_x,~f) < E(um,ir*m,~i) + e/2

for all 7T G n and 7 G T. Hence and from (6) we infer

U(Gm) < sup E(um, it, 7m) < inf E(um, it*m, 7) + e < L(Gm) + e.
vren "/er

This implies that Gm has a value function, 7^ is an optimal strategy for player II

and /T^j is an e-optimal strategy for player I, which terminates the proof.

REMARK 2.1. Let 7 = {gn} G T be arbitrary and let 7^ = {gn}, n < m, be

an optimal strategy for player II in the m-stage game. Then 7* G T defined by

7* = (ffî, 92, ■ ■ ■ > 9m, 9m.+ i,9m+2, • • •) is an optimal strategy for him too.
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3. Compactness of the set of strategies for player II. Let us assume

that each set r„ = {gn: Hn —> P(Yn)} is endowed with the topology of pointwise

convergence. Since each set Yn is assumed to be finite, so each P(Yn) is a compact

metric space. Thus, from Tychonoff's theorem and the countability of sets Hn,

n G N, we infer that each r„ is a compact metrizable topological space. Now,

let us endow T = Ti x T2 x ■ ■ • with the product topology. Then T is a compact

metrizable topological space too.

We shall need the following fact.

LEMMA 3.1. Consider a finite horizon game with a payoff um defined on Zm —

Hm x Xm x Ym. Then, for each si G Si and ir G n, the function E(um,n, -)(si) is

lower semicontinuous on V.

PROOF. First note that without loss of generality we may assume that um

is nonnegative. Then observe that under (i) and (ii) the set Zm may be repre-

sented as a denumerable sequence {zn}. Let wn: Zm —> R be defined as follows:

wn(z) — um(z) if z — zn and wn(z) — 0 otherwise. Let vn = u>i + w2 + ■ ■ ■ + wn,

n G N. Clearly, vn / um as n —> oo. By the monotone convergence theorem,

E(vn,7T,-)(sx) / E(um,ir,-)(si) as n —> oo (si G St, tt G n). It is quite obvious

that each function E(vn,ir,-)(si) is continuous on T. Thus, E(um,it,-)(si) as a

limit of nondecreasing sequences of continuous functions on T is l.s.c. on T, and

this completes the proof.

Let Hn = Sn+i x Xn+i x Yn+i x Sn+2 x Xn+2 x Yn+2 x ■ • -, n G N. Define

um- Zm^ Rby

(')        nm(tim,xm,ym) =   ml   u\hrn,xm,ym,h),        \nm,xrn,ym) G ¿mi
h£Hn

where u is the payoff function of the game G from §1.

From assumption (iv) we can conclude the following fact.

LEMMA 3.2.   // m —> oo, then um / u on H^.

From Lemmas 3.1 and 3.2 and the monotone convergence theorem we infer the

following important

COROLLARY 3.1. For each si G Si and ir G n, the function E(u,ij,-)(si) is

lower semicontinuous on V.

4. Approximation theorems for infinite horizon games. This final section

contains the main results of this paper. Here is one of them.

THEOREM 4.1. The game G satisfying (i)-(v) has a value function Val(G) and

Val(G) = lim„ Val(Gn), where Gn, n G N, are the finite horizon games with payoffs

un defined according to (7). Moreover, for any e > 0 player I has an e-optimal

strategy and player II has an optimal strategy.

PROOF. Note that Val(Gn) < Val(G„+i) < L(G) for each n G N. Hence

limn Val(Gn) < L(G). By Proposition 2.1 and Remark 2.1, for each n G N, player

II has an optimal strategy 7„ G T in G„. Since T is a compact metrizable space, so

{in} contains a subsequence {ink} converging to some 7* G T. Fix m G N. Then

for each nk > m we have

E(um^,lnk) < Val(G„J < limVal(G„) < L(G).
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This and Corollary 3.1 imply that

E(um,it,7*) < liminf ^(um,7r,7„J < L(G),        tt G ïl, meN.
k

By Lemma 3.2 and the monotone convergence theorem

£(u,7T,7*) =lim£(um,7T,7*) <L(G),        tt G n.
m

Hence

U(G) < sup f?(u, tt, 7*) < L(G).
wen

Thus, the game G has a value function and 7* is an optimal strategy for player II.

Now, let e > 0 be given. For each si G Si, let ttSi be an e-optimal strategy for

player I at state si G Si. A strategy tt for player I relying on using ttSí when the

initial state is si is an e-optimal strategy for him. Thus, the result follows.

COROLLARY 4.1. If the payoffu is a bounded continuous function on H^, then

both players have optimal strategies in the game G.

THEOREM 4.2. Let Gn, n G N, be a sequence of nonstationary stochastic

games satisfying (i)-(v) with payoffs un such that un / u as n —» 00, where u is

the payoff of the game G.  Then

Val(G;) / Val(G)    osn^oo.

PROOF. By Theorem 4.1, each game G* has a value function. Moreover, in

each game Gn player II has an optimal strategy. Since un / u as n —> 00, so the

rest of the proof proceeds along lines similar to Theorem 4.1.

Theorems 4.1 and 4.2 generalize the main results of Orkin from [7]. The methods

of proofs developed here are essentially different than those used by Orkin in [7].

The conclusion of Theorem 4.2 may fail if we assume that the sequence {un} of

l.s.c. payoffs is nonincreasing and u — lim„u„. This follows from [7, p. 215]. Here

we give an example showing that the conclusion of Theorem 4.2 need not hold if

un and u are continuous and un —> u pointwise on H^. This is a negative answer

to an open question raised by Orkin in [7, p. 216].

EXAMPLE 4.1. Let Sn = {n}, Xn = {0,1}, Yn = {0}, n€ N. Let d be a metric

on i/oc equivalent to the product topology of Hx. Given any sequence {/i"} G fíoo

converging to h° = (0,0,0,0,0,0,...) (hn ^ h°), we define a sequence {un} of

payoffs on Hx as follows: un{h) = 1 - d(h,hn)/d(h°,hn) if d(h,hn) < d(h°,hn)

and un(h) = 0 otherwise. Let u = 0. Note that un, u are continuous on H^ and

un -> u on H^,- Clearly, Val(G) = 0, but Val(G^) = 1 for each n G N.

Now, let us consider a game G with independent of time state and action spaces

and with a stationary law of motion (see Remark 1.1). A stationary strategy for

player II in such a game is a sequence 7 = {gn}, where gn(hn) = g(sn) for each

hn = (si,xi,yi,...,sn) G Hn and some g: S —> P(Y). The following example

shows that player II need not have optimal stationary strategies in the game with

stationary law of motion. This is a negative answer to a problem raised by Sengupta

in [10, Remark 4].

EXAMPLE 4.2. Let Sn = S = {0,1}, Xn = {0}, Yn = {0,1}, ne N. Let the
stationary law of motion q be given by g(0,0, y, ■) = 6(1) and q(l,0,y, ■) = 8(0)

for each y G Yn.   (Here S(s) is the Dirac measure concentrated at s G S.)   Let
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h* = (si,xi,yi,...) G Hoo be a history where s2„^.i = 0, s2n = 1, zn = 0, n € N,

2/3 = 1 and yn = 0 for n ^ 3. Let the payoff u be defined as follows: u(h) = 0

for h ^ h* and u(/i*) = —1. Note that u is l.s.c. on H^. Since player I has

only one strategy in this game, say n, so Val(G) = infier E(u,ir,')). It is easy to

see that Val(G)(0) = — 1, but for each stationary strategy 7 of player II we have

E(u, ?t,7)(0) = 0. Thus, player II has no optimal stationary strategies.
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