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CONVEX FUNCTIONS OF BOUNDED TYPE

A. W. GOODMAN

Abstract. We introduce a new class of normalized functions univalent and convex

in the unit disk. These are called convex of bounded type and the set is denoted by

CV(Rl, R2). For this set we find the Koebe domain, a coefficient bound, and a

bound for \f(z)\. We also mention a few of the many questions that can be asked

about this new class of univalent functions.

1. Introduction. Let CV(a) denote the set of functions that are convex of order a.

These are the functions of the form

(1.1) /(z) - 2 + f aBz*
n = 2

that are regular and univalent in the unit disk E: \z\ < 1, and for which

(1.2) ReÔc„(/)sReil+z^^J>o,       zin£.

Here, of course, we must have 0 < a < 1 (see [3 and 1, vol. I, pp. 137-142]).

The class CV(a) has been studied extensively, but the geometric properties of

f(E) under a function in CV(a) are not immediately clear. The condition (1.2) states

that the curve C that bounds f(E) satisfies the condition

(1.3) d^/dO^a

whenever this derivative exists. The difficulty lies in the fact that \p is an angle in the

w-plane and 0 is an angle in the z-plane. Thus the geometric implication of (1.3) is

not obvious. Our purpose is to introduce and study a similar class of functions where

the geometric nature of f(E) is readily observable. Briefly we place upper and lower

bounds on the curvature of C. It is more convenient to use p, the radius of

curvature (the reciprocal of the curvature). By a formula due to Study [4], the radius

of curvature of f(\z\ = r) is given by

(1.4) r -
H     ReßcKv/)'

re'9.
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Briefly we ask that Ä, < p < R2- However, such a condition cannot be imposed

throughout E because p -* 0 as z -> 0, and our interest centers on the boundary of

E. This forces a more complicated definition. Let

(1.5) p1(r) = minp    and    p2(r) = maxp.
1*1-' 1*1-'

Set

(1.6) R3 = liminfp,    and    R4 = limsupp2

as r -* 1 ~.

Definition 1. Let Rx and R2 be fixed in [0, oo]. We say that f(z) of the form (1),

regular and univalent in E, is in the class CV(RX, R2) if Rx < R3 and R4 < R2. A

function in CV(RX, R2) with 0 < Rx < R2 < oo is said to be a convex function of

bounded type.

Thus, by definition, the sets CV(RV R2) are increasing as either R1 -* 0 or

R2 -» oo, and the union over all Rx, R2 is the set of all normalized convex functions.

Let C be the boundary of/(£). Then by definition, if f(z) g CV(Rl, R2), then on

C

(1.7) R^ds/dxb = p < Ä2.

Here í is arc length on C and i// is the angle the tangent to C makes with the positive

real axis. Since both s and ip are in the w-plane, the geometric character of f(z) is

clear.

If a simple closed curve satisfies the condition (1.7) with 0 < Ä, < R2 < oo, we

will call it a convex curve of bounded type, and (by abuse of notation) we will write

that C g CV(Ry, R2). The investigation of such curves has a long history. Some

useful results and further references may be found in [2].

Clearly the set of functions CV(Rl, R2) is invariant under the rotation g(z) =

e~'yf(ze'y). Let CV(RV R2) be the subset of CV(RV R2) for which the bounds Ä,

and R2 in (1.7) are actually attained on C. The transformation

fin ( La     f((z + a)/(l+äz))-f(a)

(1-8) ™" /'(*)(! -W)

will take a function in CF(/?,, i?2) mto a function in the same class, if and only if

\f'(a)(l - \a\2)\ = 1. Thus (1.8) seems to be useless in the study of CV(R1, R2).

In many studies of the set 5 and its various subsets, the new function g(z) =

f(rz)/r, with 0 < r < 1, will belong to the same set as the primitive function/(z)

does. This pleasant property permits the author to prove a theorem about g(z)

which is analytic on \z\ — 1, and by taking the hmit as r -» 1 ~, obtain the same

result about functions/(z) in the same set when/(z) is not analytic on |z| = 1.

Unfortunately, the set CV(RV R2) does not behave quite as desired. If /(z) G

CV(RX, R2) and r is fixed in (0,1) it is possible that g(z) = f(rz)/r is not in

CV(RV R2). However, one can prove that as r -» 1~, the change in Rx and R2 is

negligible. Thus (omitting a few details) we can always prove a theorem about

Cr = f(\z\ = r) and then take the limit as r -* 1". Hence, without loss of generality,

we may assume that/(z) is analytic in \z\ < 1.
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2. A coefficient bound. The function

00

(2.1) F(z) m y^a~z = z + £ A"-hn,       0<^<1,
n = 2

maps E conformally onto the disk with center A/(l — A2) and radius 1/(1 — A2).

Hence F(z) G CV(RX, R2) where R2 = 1/(1 — A2) and Rx is any number in

(0, R2]. On the other hand, if f(z) g CV(Rl, R2) then/(£) is contained in some

disk of radius R2 (see [2]). An area theorem [1, vol. I, p. 27] gives

Theorem 1. Iff(z) g CV(Rx, R2), then
00

(2.2) 1 +  £ n\af < R\,
n = 2

and for each k > 2,

(2.3) k|<(((Ä2-i)A)1/2<*2A1/2-

The first inequality is sharp for each pair with 0 < Rx < R2.

From (2.2) we see that R2 ^ 1, and the set CV(RX, 1) contains only one member,

f(z) = z. The example function (2.1) suggests the conjecture that for all k and R2

and f(z) in CV(RX,R2),

(2.4) \ak\KAk-lm(l-l/R2Yk-1^,        R2>1.

If (2.4) were true, it would be sharp, and thus a great improvement over (2.3). Now

(2.4) may be the true bound for some values of k and R2, but the following example

shows that (2.4) cannot be correct for all k > 2 and R2 > 1.

Set

(2.5) G(z) = z + azk,       a > 0, k > 2.

It is well known that G(z) is convex if and only if 0 < ak2 < 1. A moderate

computation shows that G(z) g CV(RX, R2) where

(2.6) R2 = (1 - kaf/(l - k2a),       0 < ak2 < 1.

The value of Rx is not needed in what follows. For small values of k we find that

a < (1 - l/R2Yk'l)/2. However if we set a = 1/1000 and k = 17 in (2.6), we find

that R2 « 1.359. On the other hand, these values used in (2.4) give Ak~l ~

0.0000237 < 1/1000. Hence (2.4) cannot give the sharp bound for k = 17 and

R2 * 1.359.

3. Koebe domains. Let d = \w0\ where w0 is a point nearest the origin on 3/(£).

Theorem 2. Iff(z) g CV(Rv R2), then

(3.1) \f(z)\^2R2-d,        zg£.

Further,

(3.2)' d>R2-{R\- R2)1/2 = RK,

and hence f(E) always covers the disk centered at the origin with radius RK. Both

inequalities are sharp.
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Proof. By a rotation, we may set w0 = —d. The line from the origin to w0 is

normal to df(E) at w0. From [2] a disk of radius R2 and center at R2 — d will cover

f(E). This proves (3.1). Further F(z) given by (2.1) shows that for each R2 > 1, the

inequality (3.1) is sharp. For this function, R2 = 1/(1 — A2) and d is given by (3.2)

with the equal sign.

Since the disk described above covers f(E),

(3-3) M<T~Tz

whereB = (2R2 - d)d/R2andA = (R2 - d)/R2. But/'(0) = 1, and henceB > 1,

with equality if and only if f(z) = z/(\ — Az). A brief computation with

(2i?2 - d)d/R2 > 1 will give (3.2). This same function z/(l - Az) with suitable A,

shows that (3.2) is sharp. By a rotation, the inequality (3.2) gives the disk \z\ < RKas

the Koebe domain for the set CV(RX, R2) for each R2 > 1. D

The inequalities (3.1) and (3.2) give the

Corollary. Iff(z) g CV(Rx, R2) and 1/2 < d < 1, then

(3-4) R^2d^l>l

and

(3.5) |/(z)|<Ä2+(/v2-JR2)1/2,    zinE.

Both inequalities are sharp.

We next consider a subordination in the reverse direction of (3.3). If w0 is a point

of df(E) that is closest to the origin, we may set w0= —d by a suitable rotation.

From [2] the domain f(E) will contain the open disk with radius Rx and center

Rx - d. Then Bz/(1 - Az) -< f(z) where B = (2RX - d)d/Rx and A =

(Rx — d)/Rx. The condition B < 1 will give

Theorem 3. Iff(z) g CV(Rx, R2) andRx > 1, then d < Rx - (R¡ - Rx)1/2 and

d2 1
R^2d^T>        2<d<1-

Both inequalities are sharp.

Together with (3.2) we have

(3.6) R2 -{R\ - R2)1/2 ^d^Rx -{R2X - Rx)l/1

whenÄj > 1.

4. Convex functions of order a. Does either of the sets CV(RX, R2) and CV(a)

contain the other?

Theorem 4. IfR2 < cc, andO < a < 1, then

(4.1) CV(a)€ CV(RX,R2).
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Proof. The function

is in CV(a) if a # 1/2 and 0 < a «g 1. The function

(4.3) f(z)= -ln(l-z)

is in CV(l/2). If 0 < a < 1/2, then the above examples are unbounded in E and

hence cannot belong to CV(RX, R2) for any finite R2 (see Theorem 2).

If 1/2 < a < 1, and z = e', a brief computation, using (1.4), gives

(4.4) p = 2"/2a(l - coso)1"".

Hence p -» oo as 8 -» 0.       D

Theorem 5. Iff(z) g CF(ä,, i?2) and R2 < oo, then for some a,

(4.5) CF(Ä1;Ä2)c CF(a).

In fact, a > 1/4R2.

Proof. From (1.4) and the definition of CV(RX, R2) it follows that on the

boundary of E

min|z/'(z)|

minReßcl/(/)

or

min|z/'(z,

k2

Since the left side of (4.7) is a harmonic function, a minimum on dE will hold

throughout E. It is well known that if /(z) g CV(a), then

(4.8) |/'(z)| > 1/(1 + r)2(1"a) > 4-(1-a>.

Since a function in C^(Ä,, R2) is also convex, we can use (4.8) with a = 0. Then

(4.7) gives KsQCy(f) > 1/4Ä2.       D

This procedure can be iterated. Now that/(z) is in CV(a) with a = ax = 1/4R2,

we can use this in (4.8) and (4.7) to generate an a2. In general, the sequence

(4-9) a^ = W^)R~2

is a bounded increasing sequence that has a limit /?. Then (4.5) holds with a ^ ß.

However, it is clear that ß is not the best lower bound for a and hence the precise

determination of ß as the root of ß = 1/4(1"^)Ä2 that lies in (0,1) is not important.

Using a series for 4"x+x we can show that

1 ln4

(4-6) -:7ZV    i'^<*2

(4.7) RegcKC/)»1""11;^1,

4Ä2      16Ä2'

With a suitable choice of ^4, the function z/(l — yiz) is an example that lies in

CV(RX, R2) and in CV(y), where

(4.10) y = 2R2- 1 - 2(R2- R2)l/2 = ^ + ^ +  ■■-.
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It is reasonable to conjecture that y is the sharp (largest) value of a for which (4.5) is

true.

5. Other questions. What are the sharp bounds for \ak\1 It seems as though

variational formulas for other classes of univalent functions cannot be applied to the

class CV(RX, R2) or CV(RX, R2). Is there a "nice" variational formula for either of

these two classes?

We can obtain an Alexander type theorem if we define a class ST(RX, R2) of

starlike functions of bounded type. Thus F(z) g ST(Rx, R2) if and only if F(z) =

zf'(z) for some/(z) in CV(RX, R2). For such a function

Rc(zF'(z)/F(z))

as \z\ -* 1. Then each theorem about CV(RX, R2) will yield a companion theorem

for the class ST(RX, R2). But what are the geometric properties of functions in

ST(RX, RJ!

Finally, we might ask questions about a new class of normalized functions F(z)

for which

(5-1) *i<P /   iVV'   /   ^<*2

(5-2) Rl  <   „    ,    L,   \   ,1,    u   « * 2
\zF{*)\

Re(zF(z)/F(z))

as \z\ -» 1. For such functions Rx < ds/d<b < R2 on d/Xis) where $ = arg F(e'e)

and ä is arc length. Here the geometric character of F(E) is clear, but the relation of

this class to the classes CV(RX, R2) and ST(RX, R2) is not.
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