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A CHARACTERIZATION OF SUBSPACES X OF lp

FOR WHICH K( X) IS AN M-IDEAL IN L( X)

CHONG - MAN CHO1 AND WILLIAM B. JOHNSON2

Abstract. Given a subspace X of lp, 1 < p < oo, the compact operators on X are

an M-ideal in the bounded linear operators on X if and only if X has the compact

approximation property.

0. Introduction. Recently Harmand and Lima [7] proved that if A" is a Banach

space for which K(X), the space of compact operators on X, is an M-ideal in L(X),

the space of bounded linear operators on X, then there is a net {7a} in K(X) so

that:

(i) Ta -» 7 strongly,

'(ii)||7a||^lforalla,

(iii) T* -* I strongly,

(iv) lim.H/- r„|| = l.
The main result of this paper is a strong converse to the Harmand-Lima theorem

for subspaces of lp, 1 < p < oo. In Theorem 6 we show that if X is a subspace of

(LXn)p (dim A'„<oo;l</'<oo) which has the compact approximation property,

then K(X) is an M-ideal in L( X).

Part of the proof consists in showing that such an X satisfies conditions (i)-(iv) in

the Harmand-Lima theorem. This result (which is simple given the state-of-the-art in

Banach space theory) is proved for general reflexive spaces in §2.

§3 is devoted to proving the converse of the Harmand-Lima theorem for sub-

spaces of (LXn)p. Here we use blocking methods which have been previously used in

the study of isomorphic, rather than isometric, properties of lp and a few other

spaces.

1. Notation and preliminaries. If X and Y are Banach spaces, L(X, Y) (resp.

K(X, Y)) will denote the space of all bounded linear operators (resp. compact linear

operators) from X to Y. If X = Y then we simply write L(X) (resp. K(X)). Ball(X)

will denote the closed unit ball of X.
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A Banach space X is said to have the compact approximation property (resp.,

compact metric approximation property) if the identity operator on X is in the

closure of K(X) (resp. Ball(7C(A'))) with respect to the topology of uniform

convergence on compact sets in X.

A Banach space X is said to have a finite-dimensional Schauder decomposition

{ Xn }^°=1 if every x g X can be uniquely written as x = E^_,x„, where x„ g Xn and

each Xn is a finite-dimensional subspace of X. For each n the partial sum projection

P„ on X is defined by P„(LfLxx,) = L"_tX,, where x, g X¡. It is easy to see that

sup„||PJ| < oo.

A closed subspace 7 of a Banach space X is called an L-summand if there is a

projection P on X such that PX = J and ||x|| = ||Px|| + ||(7 - P)x|| for every x g X.

A closed subspace J of X is called an M-ideal if J °, the annihilator of J in X*, is an

L-summand in A"*.

Alfsen and Effros [1] and Lima [8] characterized M-ideals by intersection proper-

ties of balls. We use the following characterization of M-ideals due to Lima [8,

Theorem 6.17], A closed subspace 7 of a Banach space X is an M-ideal of X if and

only if for any e > 0, for any x g Ball(X), and for any y¡ g Ball(7) (i = 1,2,3),

there exists>< g J such that ||x + y, — y§ < 1 + e for i = 1,2,3.

2. Relations among approximation properties. Grothendieck [5] proved that if X is

a reflexive Banach space or a separable conjugate space which has the approxima-

tion property, then X has the metric approximation property. In the case of the

compact approximation property, the analogous implication is valid for reflexive

Banach spaces.

Proposition 1. If X is a separable reflexive Banach space which has the compact

approximation property, then X has the compact metric approximation property.

Proof. The Lindenstrauss-Tzafriri proof [11, p. 40] of Grothendieck's theorem

proves this. In the notation of that proof one need only observe that for any 7 in

K(X), the function gTis indeed in C(K).

Remarks. 1. It is a formal consequence of Proposition 1 that every reflexive space

with the compact approximation property also has the compact metric approxima-

tion property.

2. We do not know whether Proposition 1 is true if X is only assumed to be a

separable conjugate space. To apply the Lindenstrauss-Tzafriri argument one needs

to prove that if Y* is separable, then the weak*-continuous compact operators on

Y* are dense in K(Y*) when K(Y*) is given the topology of uniform convergence

on compact subsets of Y*.

Corollary 2. If X is a separable reflexive Banach space which has the compact

approximation property, then there is a sequence [Tn}™=x in Ba\l(K(X)) so that

Tn —» Ix(identity map on X) strongly and T* —> Ix» (identity map on X*) strongly.

Proof. By Proposition 1 there exists a sequence [Sn}^x in Ball(K(X)) so that

Sn —* I strongly. Since X is reflexive, S*x* -» x* weakly for each x* g X*. Since

X* is separable, there are convex combinations 7„ of {S,}°L„ so that T* -> I

strongly.
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Proposition 3. Suppose X is a reflexive subspace of a Banach space Y with the

property that there exists a sequence {P„}^°=1 in K(Y) such that limj|7y — PJ| < 1

and Pn —> I y (the identity map on Y) strongly, and suppose X has the compact

approximation property. Then there exists a sequence {Tn}™=x in Ball(7C( X)) such that

lim„ll/A' -Tn\\<\,Tn<-+Ix strongly and T* -» Ix, strongly.

Proof. Let {P„}^=1 be as above, and for each n, let Pn[X: X -» Y be the

restriction of Pn to X. Then Pn¡x -> IX(X -» Y) strongly. By Corollary 2 there exists

a sequence {S„ }~=1 in Bal\(K( X)) C Ball(Ä"( X, Y)) such that S„ -* Ix strongly and

S* -* Ix, strongly. As a sequence of operators from X to Y, we have Pn ¡ x - S„ -» 0

strongly as n -» oo. Since X is reflexive it follows that Pn|x — Sn -» 0 weakly in

L(X, Y) [12, p. 33]. Indeed, the map 5 -* x*(Sy) defines an isometry from K(X, Y)

to C(Bal\(X) X Ball(T*)), the space of continuous functions on the compact

Hausdorff space Ball(A') X Ball(Y~*), where Ballí-Y) has the weak topology and

Ball(T*) has the weak*-topology. As a sequence in C(Ba\\(X) X Ball(F*)),

[Pn\x ~ ^«}^-i is uniformly bounded and P„|A- - Sn -» 0 pointwise on Ball(A') X

Ball(F*). By the Riesz representation theorem and the Hahn-Banach theorem, for

any <j> g L(X, Y)*, there is a regular Borel signed measure /i on ß = Ball(A') X

Ball(T*) such that 4>(s) = fax*(Sx) dp(x, x*) for all S G K(X, Y). By the bounded

convergence theorem, <p(P„\x ~ Sn) ~~* 0 as n ~* °°-

Since Pn! v — S„ -* 0 weakly in L(X,Y), there exist sequences {Q„}l°=x and

{2-,}?., such that Q„ = Eftfi,+1X>4|X> 7„ = E^„ + 1A,5„ and ||g„ - 7„|| - 0,

where X¿ > 0, T.ak"J¡, +xXk = 1, and {û,}"., is a strictly increasing sequence of

positive integers. Obviously ||7J| < 1, lim,,^^ - 7J| < limn||7^ - Qn\\ < 1, Tn -» 7^

strongly, and 71* -» 7^* strongly.

Remarks. 1. The relationship between the weak operator topology and the weak

topology on the space of operators has been, at least in special cases, known for a

long time. The idea of using this relationship to deduce some kind of approximation

condition for a subspace from the corresponding condition for the whole space is

due to M. Feder [3],

2. The analogue of Proposition 3 for nonseparable reflexive spaces can be deduced

from Proposition 3 by using Lindenstrauss' decomposition of nonreflexive spaces via

transfinite sequences of norm one projections [10].

3. M-ideals.

Lemma 4. Suppose {P„}™=x is a sequence in K(Y) for a Banach space Y which

converges strongly to the identity map on Y and K is a weakly compact subset of Y.

Given e > 0 and a positive integer n, there exists an integer m = m(n, e) > n so that

sup    min   d(Pky, K) < e,

where d(x, K) = inf{ ||x — z\\ : z G K } is the distance from x to the set K.

Proof. If not, there exists a sequence {ym)m=„+x in K so that for each m = n +

1, n + 2,...

min   d(Pky„„K)>e.
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Letting y be any weak cluster point of {ym}^=n + x, and using the compactness of the

P/s. we infer that

inf    diPky,K)>e.
flag k < 00

This is a contradiction because y is in K and \\y - Pky\\ -» 0 as k -» oo.

Lemma 5. Lei X be a reflexive Banach space which is a subspace of a Banach space

Y which has a finite-dimensional Schauder decomposition {Xn}™_x with partial sum

projections {P„}"_i, and set a = sup„{||PJ|). Then for any e > 0 and 7 G K(X) with

|| 7" 11 < 2, there exists a positive integer n such that

(i)||(7 - P„)7x|| < e for every x G Ball(A"),

(ii) ifx g Ball(A') and\\P„x\\ % e/4, then ||7x|| < ea.

Proof. Since the closure of 7(Ball(X)) is compact, (i) is true for all large n.

If no n satisfies (ii) then there is a sequence {xk}f=x in Ball(X) such that

HP^xJI < e/4 and ||7xJ| > ea. We may assume xk -* x G X weakly. We claim that

11-xr11 < ea/3. If not, ||P/X|| > ea/3 for all large /. Since P,xk -» P,x in norm as

k -> oo, ||P/XÄ|| -» ||P/X|| > ea/3. This is impossible, since for fc > /, ||P/X*|| <

«||/>ArJCA:|| < at/A. Thus, ||x|| < ea/3.

Since 7 is compact and 7x¿ -> 7x weakly, Txk -» 7x in norm as A: —> oo. Thus

||7xA|| -» ||7x||. This is a contradiction because \\Txk\\ > eo for all A: and ||7x|| <

||7|| ||x|| < 2ea/3 < ea.

Theorem 6. If X is a closed subspace of Y = (EA^ (dim A"„ < oo, 1 < p < oo)

which has the compact approximation property, then K( X) is an M-ideal in L(X).

Proof. Let Sx, S2, S3 g Ba\\(K(X)) and 7 g Ba\l(L(X)). We show that for any

t? > 0 there exists K g K(X) such that \\S, + T - JST|J < 1 + tj (i = 1,2,3).

By Proposition 3 we can choose a sequence {7„},%, in Ba\\(K(X)) so that

liny/ - TA] < 1, 7„ -» Ix strongly, and 7„* -» Ix, strongly. Fix 1 > e > 0 and

choose m so that US, - TmS,\\ ̂  e for / = 1,2, 3. So for i = 1,2,3 we have

||S, +(/ - 7„)7|| <||7„,S, +(7 - 7„)7|| + e    for all«.

Let ( Pn} denote the partial sum projections associated with the natural finite-dimen-

sional decomposition [Xn}™_x of Y. Using Lemma 5, with this choice of P„'s (so

that a = 1), choose M so that for /' = 1,2,3,

(i) if x G Ball(A-), then ||(7 - PM)(TMS,x)\\ ̂  e,

(ii) if x g Ball(A') and ||PMx|| < e/4, then \\TmS,x\\ < e.

By Lemma 4 we can choose N > M so that for every x g X, there is k = A:(x)

(M< k < N) such that d(Pkx, X) < e||x||. Given x g A-With||x|| = l,let/c = k(x)

and picky, g A" so that ||P^x - yx\\ < e. Setting^ = x - yx, we have

(iii) || y2 -(I- Pk)x\\ = ||P,x - yx\] < e, \\(I - Pk)yx\\ < e, and \\Pky2\\ < e.

Finally, choose r large enough so that

(iv)||(7 - rf)7>|| < 8e   for   every y   in   the   set  A = {y g X:   \\y\\ < 2   and

||(7 - Pn)y\\ < e},

(v)||PM(7 -   Tr)T\\ =  ||7*(7 -   7r*)P^||  <  e    and    ||7 -   7r|| <  1  +  e.

This is possible because A has a 3e-net and 7„ -» 7 strongly.
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For x g A" with ||x|| = 1 write x = yx + y2 as in (iii). Then for i = 1,2,3,

\\TmS¡X+(I- Tr)Tx\\"

< (\\PMiTmS,x) +il - PM)iI - Tr)Tx\\

+ \\il - PM)TmS,x\\ +\\PM(I - Tr)Tx\\)P

< (||PM(7„,S,x) +(7 - PM)il - Tr)Tx\\ + e + e)P    (by (i) and (v))

= \\PMiTmS,x)f +||(7 - PM)iI - Tr)Tx\\" +/(e)    (/(e) - 0 as e - 0)

< (\\PMTmS,yx\\ +\\PMTmS,y2\\Y

+ (||(7 - PM)(I - Tr)Tyx\\ + ||(7 - PM)(I - Tr)Ty2\\)P + fie)

< (Ibill + 8e)' +(8e +(1 + e)\\y2\\)P + /(e)    (by (ii)-(v) since \\yx\\ ̂ 2)

< (||P,x|| + 9e)P + (||(7 - Pjx|| + 10e)' + /(e)    (by (iii))

< \\Pkx\\" + ||(7 - Pk)xf + gie)p       (g(e) - 0 as e -» 0)

-1+*(«)'.

Thus for / = 1,2,3,

\\S, + 7- 7r7|| =||S, +(7 - 7r)7|| < 1 + e + g(e).

Choose e so that e + g(e) < i¡ and let K = TrT.

Combining Theorem 6 with the Harmand-Lima theorem, we get the following

Corollary 7. IfXis a closed subspace of(LXn)p (dim Xn < oo), 1 < p < oo, then

K( X) is an M-ideal in L(X) if and only if X has the compact approximation property.
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