
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 93, Number 4, April 1985

RATIONAL TILINGS BY n-DIMENSIONAL CROSSES. II

S. SZABÓ

ABSTRACT. The union of translates of a closed unit n-dimensional cube whose

edges are parallel to the coordinate unit vectors e,,...,en and whose centers

are te,-, |i| < fc, 1 < j' < n, is called a (k, n)-cross. A system of translates of a

(fc, n)-cross is called an integer (a rational) lattice tiling if its union is n-space

and the interiors of its elements are disjoint, the translates form a lattice and

each translation vector of the lattice has integer (rational) coordinates. In this

paper we shall continue the examination of rational cross tilings begun in [2],

constructing rational lattice tilings by crosses that have noninteger coordinates

on several axes.

1. Introduction. Denote by ei,..., en the coordinate unit vectors and denote

by Cp the n-dimensional closed unit cube whose edges are parallel to ei,..., e„ and

whose center is P. Let Z be the set of integers and let T be a finite subset of Zn.

Let To be the union of the Cp's, where OPG {iiei + • • • + tnen: (t\,... ,tn) S T}.

We use the notation (7b, L) := {Tp: OPG L} for an arbitrary vector set L. If the

system (7b, L) covers n-space and if the interiors of its elements are disjoint, then

we say that (7b, L) is a tiling. If every coordinate of each vector of L is an integer

(is rational), then the tiling is called an integer (a rational) tiling.

Let ci,..., qn be fixed positive integers and let X be the lattice spanned by the

vectors (l/<ji)ei,..., (l/qn)en.

If we select T Ç Zn such that

T={(0,...,0),M,...,0),...,(0,...,(U): 1< |t| <k},

then the 7b that belongs to T is a (k,n)-cross. It consists of 2kn + 1 cubes; a

central cube together with 2n arms of length k. The set 7b belonging to

T={(0,...,0),(î-,0,...,0),...,(0,...,0,î):l<î<fc}

is called a (k, n)-semicross. It consists of kn + 1 cubes; a corner cube together with

n arms of length k.

In [2] we constructed noninteger lattice tilings by (fc, n)-crosses and semicrosses

for certain k and n. In these tilings only one fixed coordinate of the translation

vectors was a noninteger. The purpose of this paper is to construct more general

types of noninteger lattice tilings by (k, n)-crosses and semicrosses, namely rational

lattice tilings in which some lattice vectors have several noninteger coordinates.

The number of noninteger coordinates will depend on the prime factorization of

the numbers 2kn + 1 and kn + 1 respectively.
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We shall use algebraic techniques. Let G be an abelian group which is written

additively and let H,Ai,..., As be subsets of G and assume that each of them

contains the zero element. If each element h G H is uniquely expressible in the form

h = ai + ■ ■ ■ +as, a\ G A\,... ,as G As, and each sum a\ + ■ ■ ■ + as is in H, then we

write H = Ai + • ■ ■ + As and speak of a factorization of H. If each element h G H

is uniquely expressible in the form h = tig\ + ■ ■ ■ + tngn, (ti,..., £„) G T, where

¡7i,... ,gn are fixed elements of G, then we shall write H = T(g\,... ,gn)*■ (We

may think of the multiplication of the "matrix" T by the "vector" (<ji,..., gn)*.)

If g is a nonzero element of G and has order at least q, then we shall denote the set

{0, g, 2g,..., (q — l)g} by [g]q. The subscript q denotes the cardinality of the set.

2. General results.  We wish to use the following results from [2J.

THEOREM 2.1 [2, THEOREM 2.1]. (1) There exists a tiling (7b,L), L Ç X

if and only if there exists an abelian group G which is factorizable in the form

(2.1) G = T{qigi,..., qngny + [gi]gi +■■■ + kk + H,

where g\,..., gn generate G and H is a subset of G.

(2) L = Htp-1, where ip: X —> G is given by

(2.2) ((zi/<7i)eiH-(- {zn/qn)en)<p = zxgx H-V zngn;        zx,...,zneZ.

(3) The set L is a lattice if and only if H is a subgroup of G, denoted H < G.

REMARK 2.1. If L is a rational lattice, then there are positive integers qi,..., qn

G Z such that L Ç X, where X is spanned by ei/gi,... ,en/qn. Indeed, if L is

spanned by 1,,...,ln and if L = Y,(PijI'Qij)ej, P¿i>Qij e ^, Qij > 0, tnen aj can be

the least common multiple of q\3,...,qnj.

REMARK 2.2. When (7b, L) is a lattice tiling, we may assume that H — {0} in

(2.1) since if H < G we can replace G by the factor group G/H.

The next theorem generalizes the third statement in Theorem 2.1 in [2]. The

symbol ¿iïH is short for £"=îjj/î.

THEOREM 2.2. Let (7b,L), LCXteo tiling and assume that ei,...,en G

T(ei,..., e„)*. The ith coordinate of each vector of L is an integer if and only if

the set

(2.3) St = T(qigi,.. .,qngny +H + Qftl«

in the factorization (2.1) is a subgroup of G.

PROOF. For simplicity we shall prove only the case i = 1. Assume that the set

Si is a subgroup of G. We shall prove that if 1 G L, then the first coordinate of 1

is an integer.

Since (7b, L) is a tiling and L Ç X, we see that —1 is uniquely expressible in the

form —1 = (z\¡q\)et + ■ ■ • + {zn/qn)en, z\,..., zn G Z. Let it,, V{ be integers such

that Zi = Uiqi +vt, 0 < Vi < g¿. Thus we have

n n

(2.4) -1 = Y^ %e¿ + ¿^{vj/qj)^.
3 = 1 j = l
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Applying the homomorphism <p defined by (2.2), we obtain

n n

(-l)f = Y "**■& + Y v^9j-
3=1 3=1

We know that ei,...,enG T(ei,..., e„)*, hence qx g^,..., qngn G T(qi gq,..., qngn)*,

and also that (\)<p G H. Denote (lip) by h. Then

(n n \

h + Y uiWj + Y vi9i eSi'

Since h + Xa=i ujQj9j + S?=2 uj9j 's a^so m '-'i' the difference between these two

sums, namely vigi, is also in S\. Since the sum (2.1) is direct, v\ = 0, and it follows

from (2.4) that the first coordinate of 1 is an integer.

Assume that the first coordinate of each vector of L is an integer, We shall show

that Si < G. Let t,t' G T(ei,... ,e„)*, 1,1' G L, and 0 < Vj,^ < q3, 2 < j < n.

The first coordinate of the vector

(2.5) It + 1 + ¿(«jAfrH    -    t' + 1' + ¿(«J/fl¡,-)e¿

is an integer. Since (7b, L) is a tiling and L Ç X, there exist t" G T(e\,... ,e„)*,

1" G L and 0 < v" < qj, 1 < j < n, such that the vector (2.5) equals t" + 1" +

Y^j=Av'íiQj)^]- thus v'{ = 0. Application of the homomorphism ip shows that

Si <G.
REMARK 2.3. The assumption ei,..., en G T(ei,..., en)* cannot be removed,

as the following 2-dimensional tiling illustrates. Let X and L be the lattice spanned

by (l/2)ei,e2 and 2ei, (-l/2)ei + e2 respectively, and let T = {(0,0), (1,0)}.

Obviously, (7b,L) is a lattice tiling, that is, X = T(ei,e2)* + [(l/2)ei]2 + L is

a factorization of X. Let G be a cyclic group of order 4 and let g be one of its

generators. If g\ = g2 = g and ip: X —> G is defined by ((zi/2)ei + 22e2)^ =

zi!7i +^2ff2, ^1,^2 £ Z, then we have the factorization G = T(2(7i,<?2)* + [<7i]2. Now

the lattice L is not an integer lattice but

T(2gu g2y = {0 • 29l + 0 • g2,1 • 29l + 0 ■ g2} = {0,2g} < G.

THEOREM 2.3. If there is an abelian group G which is factorizable in the form

(2.1) and q\ > l,...,qs > 1, s < n, and gn generates G, then there is a lattice

tiling (To, L), L Ç X such that L has a vector whose first s coordinates are not

integers.

PROOF. According to Theorem 2.1 the system (7b, Htp~l) is a tiling, where

<p: X —' G is given by (2.2). There exists a¿ G Z such that <?¿ = a¿g„, 1 < i < s,

since gn generates G. The vectors (—l/<fc)e¿ + (ai/qn)en are elements of Hip-1,

because

((-l/fj¿)e¿ + (ai/qn)en)<p = (-l/q^p + (ai/qn)en<p = -g% + atgn = 0.

Hence the sum of these vectors is an element of Hip-1 as well and its first s

coordinates are not integers.
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REMARK 2.4. The referee has pointed out that if in a lattice there exists for

each i, 1 < i < n, a lattice vector whose ¿th coordinate is not an integer, then it

does not follow that there exists a lattice vector all of whose coordinates are not

integers. Indeed, let n be an odd number and consider the lattice spanned by the

vectors (l/2)(ei H-Y e„) + (l/2)e¿, 1 < i < n.

3. Tilings by crosses and semicrosses. In this section we apply the preced-

ing theory to two special sets T, the (fc,n)-cross and (fc,n)-semicross.

The next lemma plays an important part in the proof of the following theorem.

LEMMA 3.1. If H,A,B are subsets of an abelian group, H = A + B is a

factorization and A — {0} U A' U (-A1) and B = {0} Uß'U (-B1) are partitions,

then there exists a partition H = {0} U H' U (-H1).

PROOF. Let H' = A' U B' U (A1 + B') U (A' - B').

THEOREM 3.1. If2n+lis the product of s primes, then there exists a rational

lattice tiling by (l,n)-crosses in which one of the lattice vectors has s — l noninteger

coordinates.

PROOF. According to Theorem 2.3, it is sufficient to give integers ci,..., qn, an

abelian group G, and its factorization in the form

(3.1) G = {0,qigi,... ,qngn, -qigi,..., -qngn} + [ffi]<7i +"•+ [ffn]9n,

where q\ > 1,..., qs-i > 1, and gn generates G.

Let qi,...,qn,r\, —,rs be integers such that qs = ■ ■ ■ = qn = I, and the others

are greater than one, and r\ ■ ■ -rs = 2n + 1. Let G be the cyclic group of order

(2n + l)<7i • • ■ <7,,_i and let g be one of its generators. Obviously, ri,..., rs are odd

numbers. The factorizations

G = {(-(n - l)/2)ff,..., ~g, 0, g,..., ((n - l)/2)g} + [rig}qi + rmG,

riqiG = riqi ({(-(r2 - l)/2)g,..., -g, 0, g,..., ((r2 - l)/2)g} + [r2g]q2 + r2q2G),

etc. show that there exists a factorization

G = Vi + • • • + Va + [gi}qi + ■■■ + Gfc-i],..,,

where gx = ng, gz = n ■ ■ -riqi ■ ■ qi-ig, 2 < i < s - 1, and

Vi = {(-r(n - l)/2)g, ...,-g,0,g,..., ((n - l)/2)ff},

Vi+1 = qi{(-(rl+l - l)l2)gi,..., -gt, 0,di,..., ((n+i - 1)/2)<7J,     1 < t < s - 1.

Obviously, qig% G V,+i, 1 < ¿ < s — 1. By Lemma 3.1 we conclude that there exists

a partition Vi + --- + Vs = {0}uVrU(-Vr). Since \Vi + --- + Vs\ =Tl---rs = 2n+l =

2\V\ + 1, we can denote the elements of V\{qigi,... ,qs-\gs-\} by gs,... ,gn. So

V\-\-hVs= {0, qigi,..., qngn, -qigi, ■ • ■, -qngn},

that is, G is factorizable in the form (3.1). Since g G Vi, we may assume that

gn = g. Thus T(gigi,... ,qnÇn)* generates G. It is then a simple matter to apply

Theorem 2.2.

A similar method can be used to prove the following theorem.
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THEOREM 3.2. If n+I is the product of s primes, then there exists a rational

lattice tiling by (\,n)-semicrosses in which one of the lattice vectors has s — 1

noninteger coordinates.

We shall illustrate our method in the case of the (l,7)-semicrosses. We have

r\ = r2 = rs — 2, and choose ci = <?2 = 3, <?3 = ■ • ■ = <J7 = 1, and so let G be

the cyclic group of order r\r2r3q\q2 = 72 with 72g — 0 as its defining relation.

Consider the factorization

G = {0, g} + {0,2g, 4g} + {0,6g} + {0,12g, 24g} + {0,36g}

= {0,3 • 2g, 3 • 12g, 7g, 37g, 42g, 43;?, g} + [2g}3 + [12g}3.

According to Theorem 2.1, there exists a lattice tiling by (1,7)-semicrosses. The

vectors -(l/3)ex + 2e7, -(l/3)e2 + 12e7, -e3 + 7e7, -e4 + 37e7, -e5 + 42e7,

—eß + 43e7, 72e7 span the lattice of translations.

We need the following three theorems for proving our main result, which concerns

crosses or semicrosses whose arm length may be greater than one.

THEOREM 3.3 [1, THEOREM 4, p. 324]. Assume that j is relatively prime to

2kn + 1 for 1 < j < k. The finite abelian group G is partitionable in the form

(3.2) G = {0} U I \J{gi, 2Si,..., kgu -gt, -2gx,..., -kQl} j

if and only if for each prime divisor p of \G\ the cyclic group C of order p is

partitionable in the form

C = {0}U I {J{ci,2ci,...,kci,-Ci,-2ci,...,-kCi} J .

THEOREM 3.4 [2, THEOREM 3.3, p. 218]. Assume that j is relatively prime

to 2kn + 1 for 1 < j < k and the finite abelian G is partitionable in the form (3.2).

Then G is partitionable in this form such that a set of generators of G is a subset

of{gi,.-.,gn}.

THEOREM 3.5 [1, THEOREM 1, p. 322]. Let H, A be subsets and let B be a

subgroup of an abelian group. Assume that H — A + B is a factorization and that

A and B are partitionable in the forms

/   u \

A = {0}U I \J{ai,2a%,...,kal,-al,-2ai,...,-kal) J ,

B = {0} U Í (J {b%, 2b%,..., kbi, -bi, -2bi,..., -kbt}\ ,

and that j is relatively prime to \B\ for 1 < j < k. Then H is partitionable in the

form

H = {0}0 j Q{/iî,2/iî,...,rc/i,,-/iî,-2^,...,-fc/iî}| ,

where {h\,...,hw} = {6¿: 1 <i <v}ö {a, + b: 1 < i < u, b G B}.

THEOREM 3.6. // there exists an integer lattice tiling by (k,n)-crosses and if

2kn + 1 has s distinct prime divisors (2kn + 1 is the product of s relatively prime
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powers) and if j is relatively prime to 2kn + 1 for 1 < j < k, then there exists a

rational lattice tiling by (k,n)-crosses in which one of the lattice vectors has s — 1

noninteger coordinates.

PROOF. According to Theorem 2.3, it is sufficient to show that there exists an

abelian group G which is factorizable in the form (2.1) such that qi > 1,..., qs-\ >

1, and gn generates G. Let q\,..., qn, r\,..., rs be pairwise relatively prime positive

integers, such that qs = ■ ■ ■ = gn = 1, and the others are greater than one, and

n • • • rs = 2kn + 1. Let G be the cyclic group of order (2kn + l)gi • • • <js-i and let

g be one of its generators. We shall use this group G and choice of <7,'s to prove the

theorem.

When the set 7b is a (k, n)-cross, then

T (qigi,..., qngn)* = {0}U I {J{qigi,2gigt,... ,kqigi,-qigl,-2qtgi,... ,-kq^} J .

Since there exists an integer lattice tiling by (k, n)-crosses, we conclude from The-

orem 2.1 that there is an abelian group G' of order 2nk + 1 such that G' =

T(g[,..., g'n)*; in other words G' is partitionable in the form

G' = {0} U m {g¡, 2g¡,..., kg¡, -g¡,..., -kg¡}\ .

Consider the factor group G/(riG), which is a cyclic group of order n. Since 2fcn+l

is divisible by r\, according to Theorem 3.3 the factor group is partitionable in the

form

(3.3) r.GU I yj{dih,2dih,... ,kd{h,-dih,-2dih,... ,-kdih)    ,

where h is a generator of G/riG and c¡¿ G Z. According to Theorem 3.4 we may

assume that di = 1. Let

A = {0}U I \J{dlg,2dlg,... ,kdlg,-dlg,-2dtg,.. .,-kd%g}\ .

By (3.3) the set {0} U {jti¿: 1 < \j\ < k, 1 < i < t} is a complete set of residues

modulo ri and so A is a complete set of coset representatives for G modulo riG.

Thus G has a factorization G = A + riG. Since the r¿'s and g¿'s are pairwise

relatively prime, the group riG, whose order is r2 ■ ■ ■ rsqi ■ ■ ■ qs-i, is the direct

sum of the cyclic groups G\,..., Gs_i of orders qir2, q2r3,..., qs-irs respectively.

If 7¿ is a generator of G¿, then Gt is factorizable in the form G2 = {^i]qi + qiGl.

Obviously, qiGt is a cyclic group of order r¿+i and <j¿7¿ is its generator. Since 2fcn+l

is divisible by r¿+i, according to Theorem 3.3 the group c¿G¿ is partitionable in the

form

qiGi = {0} U     (J {6íj,26íj, ..., kSij, ~6ij, -26lJ,..., -kb~ij} J ,

where, according to Theorem 3.4, we may assume that On — q^i. Finally, G has

the factorization

G = A + cid H-h <7s-iGs_i + [ii]qi H-h [7s-i]9,-,-
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According to Theorem 3.5, the set A + qiGi +-1- <7s-iGs_i is partitionable in

the form

( U{0} U I [J{ai,2ai,... ,kai,-ai,-2oti,... ,-koti}
\i=i

and we may assume that Qi  = 9171,... ,as_i  = qs-i^s-i,an = g.   Thus by

choosing 9¿ = 7¿, 1 < i < s — 1, and g3 = a3, s < j < n, G has a factorization in

the form (2.1) and gn = g generates G.

A similar method can be used to prove the following analogue of Theorem 3.6.

THEOREM 3.7. If there exists an integer lattice tiling by (k,n)-semicrosses,

if kn + 1 has s distinct prime divisors and if j is relatively prime to kn + 1 for

1 < j < k, then there exists a rational lattice tiling by (k,n)-semicrosses in which

one of the lattice vectors has s — 1 noninteger coordinates.

REMARK 3.1. In the proof of Theorem 3.6 we have used only the fact that the

numbers q\r2,... ,qs~irs are pairwise relatively prime. So when 2kn + 1 has s

distinct prime divisors and at least one of them occurs at least twice in the prime

factorization of 2kn + 1, the method of the proof of Theorem 3.6 gives s noninteger

coordinates.

We shall treat the example of (2, 37)-semicross to illustrate the method of the

proof of Theorem 3.7 and Remark 3.1. Now kn+1 = 2-37+1 = 3-52, so kn+1 has

two distinct prime divisors 3 and 5. Let r\ =5, r2 = 3, r3 = 5, ci = 3, q2 = 2 and

let G be the cyclic group of order rir2r3qiq2 = 450. The numbers qir2 and q2r$ are

relatively prime. Let g be a generator of G. The factor group G/5G is factorizable

in the form 5Gu{g + 5G, 2(7+5G}u{4(/-t-5G,8<?-l-5G} so G is expressible in the form

({0} U {g, 2g} U {4g, 8g}) + 5G. The group 5G is the direct sum of the groups 50G

and 45G. Obviusly, 50G = [50g]3 + 150G and 45G = [45g]2+90G are factorizations.
The groups 150G and 90G are partitionable in the forms {0} U {150g, 300g} and

{0} U {900,180g} U {360g, 720g}. Finally, G is expressible in the form

+ [0l]9l +--- + [?37]937,

where {qig\,q2g2,... ,937337} = {150<7,90g,... ,g} and qx = 3, q2 = 2, «73 = • • ■ =

q31 — 1 so gi = bOg, g2 = 45<?,..., <?37 = g. According to Theorem 2.1 there exists

a corresponding lattice tiling by (2,37)-semicrosses. Clearly (-l/3)ei + 50e37 and

(—l/2)e2 + 45e37 are vectors in this lattice tiling.

If in the prime factorization of 2kn + 1 the exponents of some primes are greater

than one, then the following theorem may provide more noninteger coordinates

than Theorem 3.6 does.

THEOREM 3.8. // there exists an integer lattice tiling by (k,n)-crosses and

2kn + 1 is the product of s primes and if j is relatively prime to 2kn + 1 for 1 <

i < k, then there exists a rational lattice tiling by (k,n)-crosses having noninteger

coordinates on m axes, where m is the integer part of s/2.

PROOF. Denote by m the integer part of the half of the number of prime factors

2kn + 1. Divide the s prime factors of 2kn + 1 into m couples in case s is even and

divide the primes into m — 1 couples and one triplet in case s is odd.  Denote by

G =
37

{0}U     \J{qlgl,2qlgl}
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ri,... ,rm the products of the elements of the couples and the triplet respectively.

Let r¿ = UiVt, where u¿ and Vi are integers greater than one, for 1 < i < m. Choose

the integers qi,. ■ ■ ,qn in such a way that <ji > 1,..., qm > 1, qm+i = ■ • • = qn =

1. Let G be the internal direct sum of the cyclic groups Gi,...,GTO of orders

fiÇi, • • •, rm<¡m and generators 71,... ,7m, respectively. Consider the factor group

B = G/(£3™ j UiGi). In the well-known way we conclude that H is partitionable

in the form

B = {0} U I (j {xi, 2Xl, ...,kXi, -Xi, "2Xt, ■ • ■, ~k^} J ,

and we may assume that Xi, • • • >Xm generate íí. Let £>: G —► // be a homomor-

phism given by
(71 \ n

X] ̂  ) <p = X] 2»^9¿7í,      «i e #■
»=1     /       ¿=1

Select a¿ G G such that o¿<p = x« for 1 < i < m and let

A = {0}U    [J{ai,2ai,... ,kai, -a,,-2ai,..., -km}    .

Note that G = A + YlT=i uiGi is a factorization. Using the factorizations Uid =

[uili]gi + UiqiGi we have the factorization

G = A + Y^ulqlGi + ^[u»7i]9i-
i=i t=l

According to Theorem 3.5 the set A + X^Hi uiQiGi is partitionable in the form

W u     U "iaJ' 2ai' ' • • ' fcaJ' ~aJ' ~2aJ'' ' • • ' ~fcQj}

and we may assume that a3 — u3q3^3 and an_3+i = 7,-, 1 < j < m. If we select

gi = u¿7¿, 1 < i < m, and ¡7,• = ay, m + 1 < j < n, then G is expressible in the

form (2.1). So according to Theorem 2.1 there exists a rational lattice tiling by

(k, n)-crosses. Now we shall prove that the set

m

Si = ¡A + J2 UjQjGj    + Y feta = T{qm, ■.., qngny + Y ^
V     j=l        J    1=}. 1=}.

is not a subgroup of G for 1 < i < m. Indeed, the set {71,..., 7m} Ç St generates

a group of order

(2kn + l)qi ■ ■ ■ qm > (l/qt)(2kn + l)çi ■ • ■ qm - \SZ\.

The proof of the following theorem is carried out analogously to the proof of the

preceding theorem.
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THEOREM 3.9. If there exists an integer lattice tiling by (k,n)-semicrosses, if

kn+1 is a product of s primes and if i is relatively prime to kn+1 for 1 < i < k,

then there exists a rational lattice tiling by (k,n)-semicrosses having noninteger

coordinates on m axes, where m is the integer part of s/2.

Consider the example of the (2,40)-semicross to illustrate the method of the

proof of Theorem 3.9. Now kn + 1 = 2 • 40 + 1 = 34. Let G be the direct sum of the

cyclic groups Gi and G2 of order 18 and generators 71 and 72, respectively. The

factor group G/(3Gi + 3G2) is partitionable in the form

3G1+3G2U{xi,2xi}U{x2,2x2}U{xi+X2,2(xi+X2)}u{xi+2x2,2(xi+2x2)},

where jXl = hi + 3Gj + 3G2, 1 < i, j < 2. Let

A = {0} U {71,271} U {72,272} U {71 + 72,2(71 + 72)} U {71 + 272,2(71 + 272)}.

Since 3Gi = {0,37i} + {0,671,1271} and 3G2 = {0,372} + {0,672,1272}, we have

G = A + 3d + 3G2 + [371 ]2 + [372]2. Thus G is expressible in the form

G =
40

{0}U    \J{qigi,2qigi}
-i

+ [ffi]9i +--- + Ï940j940>

where ci = q2 = 2, q3 = ■ ■ ■ = qAQ = 1 and gi = 371, g2 = 3^2, ...,g3g = 71,

340 = 72-
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