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SYMMETRIC DETERMINANTS AND JORDAN NORM

SIMILARITIES IN CHARACTERISTIC 2

WILLIAM C. WATERHOUSE1

Abstract. We first determine all linear changes of variable formally preserving

symmetric determinants in characteristic 2; there are just slightly more of them than

in other characteristics. We then restate this result in terms of affine group schemes.

This allows us to apply descent theory, and thereby we prove a theorem on norm

similarities of lordan algebras in the one case left open by Jacobson.

Consider an/tXn symmetric matrix with indeterminate entries X¡ on the diagonal

and Yjj (for i < j) in the (i, j) and (j, i) positions. Let D(X, Y) be its determinant.

We are interested in the linear changes of variable (in X and Y), with coefficients in

a fixed commutative ring R, that take D to a constant multiple of itself. When 2 is

not a zero-divisor in R, these maps are known [5, §6]. In this paper we will consider

only the case where R has characteristic 2.

Once the characteristic is 2, we can evaluate D by the classical formula [4, p. 410]

for a determinant with skew off-diagonal entries:

/ ¡mi

where Pf, means the Pfaffian of the alternating matrix having entries Yt> with /', j in

7. The sum runs over all subsets 7 of {1,2,...,«} containing an even number of

elements; it includes 7=0, with the Pfaffian put equal to 1. Indeed, if we expand

out a determinant and look at the terms containing just a specified set of diagonal

entries, we find that the remaining factors in those terms are the diagonal-avoiding

terms in the complementary principal minor (an observation due to Cayley). In our

case the off-diagonal entries are skew, and so these remaining factors add up to the

square of the Pfaffian (giving zero, of course, for odd sizes). As Pf, is a polynomial

with coefficients in the prime field F2, we can move the square inside and write

¿> = EPf,(r„2)-rU-
/ ¡m i
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1. A determinant identity.

Lemma 1. Let (ai) be elements in a ring of characteristic 2, with X < i,j ^ n. Then

LPf,(£a*4^ + I {afa'j + a^)YA ■ YllZ^Xj
i        v k r<s '    ier\ j

= det(ö/) -D(X,Y).

Proof. It is enough to prove this identity for aj indeterminates over F2. Extend

the ring F2[(a/)] by adjoining square roots pf, so a{ = (pf)2. Let P be the matrix

( pf). The map replacing our original X, Y matrix by

I X Y ■ ■ ■ \Ax lx2
px,

multiplies the determinant by (det P)2 = det(a/). But it is straightforward to

compute that this map replaces the diagonal entry X¡ by Y.j(pf)2Xj, or E,a/X, while

it replaces the off-diagonal entry Y¡¡ by

LpÎPjkxk+ L{pïpf + p*p;)Yrs.
k r<s

As the characteristic is 2, the square of this expression is

k r<s

Thus the formula for D, applied to our new determinant, does yield the left side of

the identity stated in the lemma.    D

2. Changes of variable perserving D( X, Y).

Theorem 2. Let

U, = LafXj + Lb/kYjk   and   V;j - £c* Jfc + Ld[]Yrs,

where the coefficients lie in a ring of characteristic 2. These expressions will be new

independent variables with D(U, V) a constant multiple of D(X, Y)precisely when:

(X) det(af) is invertible,

(2) all bfk = 0,

(3)(c*)2 - a'faf,and
(4) (d?j)2 = a\a) + a\a].

Under these conditions, D(U,V)= del(af)D(X, Y).

Proof. It follows from Lemma 1 that the conditions are sufficient. Indeed, only

( VtJ)2 enters the formula for D(U, V), and conditions (3) and (4) allow us to express

the coefficients in (V^)2 in terms of the asr. Since condition (2) shows that no YJk

terms occur in U„ we have D(U, V) = det(af)D(X, Y) by the lemma.

Suppose now, conversely, that we have an arbitrary change of variables for which

D(u,v) = 2ZPf,{v2).Uui
¡mi
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is a constant multiple a times D(X, Y). We assume, of course, that the change of

variables is invertible, so the U¡ and V¡¡ are again independent variables. To analyze

the identity D(U(X, Y), V(X, Y)) = aD(X, Y), we can use a method due originally

(I believe) to Frobenius [1]. What we do is to introduce a new variable Z, add it to

one of Xi or Y¡ -, expand the resulting identity, and compare the terms of the same

degree in Z.

First, let us add Z to Y . In D(X, Y), the variable Y occurs only as Y2. Thus

there will be no terms of degree 1 in Z. Similarly, D(U,V) will not give any terms of

degree 1 in Z arising from the Y in Pfr(Vfj). Thus the only terms of degree 1 in Z

are those occuring in

LM^-um + brz),
¡mi

namely,

E'W/(^)-E \UUjUrz.
i rmi\i<£i    I

j*r

The coefficient of Z in this sum must therefore be identically zero. In particular,

looking only at the terms involving no V2, we find that

r   li*r      I

must be identically zero. As the U are independent variables, this implies condition

(2) of the theorem.

At this point we might look back at the identity D(U,V) = aD(X, Y). The term

aXx ■ ■ ■ Xn on the right can arise only from the term Ux ■ ■ ■ U„ on the left, since all

other terms there involve squares. But the coefficient of Xx • ■ • Xn in Ux ■ ■ ■ Un is

just det(a/), since the characteristic is 2 and signs are irrelevant in the determinant.

As our change of variables can be inverted, a is invertible, and thus condition (1)

must hold.

Continuing with the identity D(U,V) = aD(X, Y), let us look for terms of the

form Y2 (Tli¥l ~X¡). Such a term occurs exactly once in D(X, Y). In D(U, V), no

such monomial will occur for any 7 containing 4 or more indices, since each term in

Pf,(F2) either will have a higher degree in Y or will involve the square of some X¡.

By condition (2), no terms of our form occur in Ux ■ ■ ■ U„. Thus such terms arise

only from subsets 7 containing exactly two indices. These subsets give

sró- n Uj.
r< s j^ r.s

Now the coefficient of Y\i¥,u VX¡ in \f~j+rJJj is simply an (n — 2) X (n — 2) minor

determinant of (aj), since again signs are irrelevant in characteristic 2. Let us denote

this minor by A/™. We know that D(X, Y) does not contain any term with Y2 times

any other product of X 's. Thus

£ id" )2 • MZ = Í" = det^a^   ifp = u-ci = vi

r<. lO otherwise.
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As an equation on square matrices of size n(n — l)/2, this says that

[(¿;;)1-[A''-V)] = det(«/).7¿.

But there is a classical identity on adjoints, and once we ignore signs it tells us that

[A2(aj)]-[A"~2(aj)]=dct(aj)-Id.

Since we already know det(a/) is invertible, we know that A"~2(aj) is an invertible

matrix, and hence we can deduce

[K"*)2]-[Aa(W)].

When we read this off entry by entry, we get condition (4).

Finally, to determine the c* we consider the effect of changing Xk to Xk + Z. In

D( X, Y), the factor Xk occurs only to the first power, and thus we will get no terms

at all that involve Z2. Hence when we make the corresponding change in U and V,

the Z2-terms must all cancel. The expression we have, to begin with, is

iPf,(F/2+(4z)2).n(í/í+«fz).
/       v '   ¡mi

Let us focus on the terms that involve Z2 and (n — 2) distinct U¡, with no V¡¡ factors

or higher {/-powers. As in the previous argument, we see that such terms can come

only from 7 with less than 4 elements. Those with 2 elements give

I(c*)2z2. Uur,
,<j r*i,j

while 7=0 gives

e^z2- n ur.
¡<j r+ij

The Ur are independent, and these terms must cancel each other; thus condition (3)

must hold.    D

3. Interpretation using affine group schemes. The conditions in Theorem 2 define

an affine group scheme F over F2. That is [5], for every 7? of characteristic 2 they

single out a subgroup F(R) inside GLn(/I + 1)/2(/\), and this subgroup is defined by

polynomial equations on the matrix entries. Our goal now is to analyze this affine

group scheme. One result will be a more explicit determination of F(R) when 7? is

reduced.

Proposition 3. The Lie algebra Lie(F) has dimension X + n2(n2 - l)/4.

Proof. Let R = F2[e] with e2 = 0. The Lie algebra of a group scheme, in one of its

equivalent forms [5, Chapter 12], consists of those elements in F(R) that reduce to

the identity when we reduce e to 0. Condition (2) tells us that the bfk are zero. The

other entries will have the form

aj = S/ + eAj,    C*=<,    d[] = Ô[8J + eDfj
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for scalars A, C, D. The invertibility of det(a/) is automatic for such elements.

Condition (3) requires (c£)2, which is = e2(C//)2 = 0, to equal

afaf = e(SkAk + 8kAk).

This imposes no restrictions on the c¡¡, but it forces 8kAk + 8kAk = 0. This says that

Aq = 0 forp * q.

Finally, condition (4) deals with (dff)2, which = (8[8J + eDfj)2 = 8J8J; this must
equal a-aj + afof. Since Aqp = 0 for p ¥= q, this condition is automatic unless / = r

and y = s; in that case, it gives us 1 = 1 + e(A) + Aj). Thus all A) are equal.

All in all, then, we have one degree of freedom among the Aj and free choice of

the n ■ n(n — l)/2 different Cfj and the [n(n — l)/2]2 different Dfj. These dimen-

sions add up to 1 + n2(n2 - l)/4.    D

In characteristic zero, the dimension of the Lie algebra equals the dimension of

the group. In positive characteristics, this is true only for "smooth" group schemes.

In characteristic # 2, the group scheme preserving symmetric determinants up to

scalar is, in fact, still smooth. (This was first stated explicitly in [6, 7], but it is an

immediate consequence of results proved earlier by Jacobson [2, 3].) Here in

characteristic 2, however, we shall see that for n > 2 the group scheme F is not

smooth. To show this, we use two maps interrelating F and GL„.

First of all, the computation in the proof of Lemma 1 shows that there is a

homomorphism GLn(R) —> F(R) sending P to P( )7>tr. The kernel of this map is

easily computed: it is jw2(/\), the scalars a with a2 = 1. (There may be nontrivial

such a even in characteristic 2, since R in general is not assumed to be a field.)

Group schemes like this kernel, trivial on fields, may be called "infinitesimal".

The formulas in Theorem 2 show that there is also a natural homomorphism

F(R) -* GLn(R), sending an element in F(R) to (aj). The kernel of this map is

again infinitesimal: for when aj = 8f, we have (ckj)2 = 0 and (dff)2 = 8[8f, and

these conditions force an element in F(R) to be the identity when R is a field.

Finally, the computations in Lemma 1 show that the composite map GL„ -> F —>

GL„ sends (pf) to ([pf]2). This is what is called the Frobenius endomorphism in

characteristic 2, and on smooth groups like GLn it is an epimorphism (surjective

when R is an algebraically closed field). Hence F -» GL„ is an epimorphism. Since

the infinitestimal kernel is connected of dimension 0, and GL„ is connected of

dimension n 2, we have

Proposition 4. The group scheme F is connected and has dimension n2.    D

Comparing this with the result in Proposition 3, we immediately have

Corollary 5. If n ^ 3, the group scheme F is not smooth.   D

Let A be the algebra over F2 constructed by taking the formal ring

F^aj^^d^l/dctiaj)]

and dividing by the relations in Theorem 2. Then Corollary 5 says that (for n > 3)

there are nontrivial nilpotent elements in A. We can define a smooth subgroup
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FKd(R) of F(R) by imposing the further condition that all nilpotent expressions in

A vanish on the entries of elements in Fred. (When R is a field, FTcd(R) = F(R).) We

already have GL,? mapping into F with kernel ju2, and hence the group scheme

quotient GL,,/p2 is embedded as a closed subgroup of F. As GL„ is smooth, so is

GL„/jii2, and thus GL„/¡u2 is inside Fred. But Fred is connected (since F is), and by

Proposition 4 it has the same dimension as GLn/p2. By [5,12.4], we have equality:

Proposition 6. We have Fred = GL„//i2.   D

If R is reduced (i.e., without nilpotents), then any solution in R of the equations

defining F will satisfy the further conditions defining Fred. Thus

Corollary 7. If R is reduced, F(R) = (GLn/n2)(R).   D

This corollary answers a question raised in [6], where the case n = 3 was worked

out. It does not imply that the map from GLn(R) to F(R) is surjective, since the

map GL„ —» GLw/ju2 is only a group scheme epimorphism. As shown in [6], the true

conclusion is

Proposition 8. Suppose R is reduced. Then the maps \P( )P" (for invertible scalar

X, matrix P) are a normal subgroup of F(R). When n is odd, they are all of F(R).

When n is even, the quotient is isomorphic to the group of invertible R-modules M

satisfying M ® M = R and © J'M = R".    D

For R containing nilpotents, this proposition will not hold. That is illustrated by

the computation with R = F2[e] in Proposition 3.

4. Application to Jordan algebras.

Theorem 9. Let k be a field. Let A be a central simple algebra over k, and suppose J

is an involution of orthogonal type on A. Let H(A, J) be the fixed set of J, a

(quadratic) Jordan algebra over k, and let N be its generic norm polynomial. The only

invertible linear maps cp: 77 —> H for which N(cpX) is a constant multiple of N(X) are

those of the form cp(X) = XcXcJ, for invertible X in k and c in A.

Proof. This result was proved by Jacobson [2, 3] except in characteristic 2, so we

may assume char(/c) = 2. (An argument like the one here would, of course, work

also in other characteristics.) Let Fx be the affine group scheme preserving the

polynomial N. Let G be the affine group scheme defined by G(R) = (A ® R)x. We

have a group scheme homomorphism Gm X G —> Fx sending (À, c) to the map

X -* XcXcJ. We want to show that Gm(k) X G(k) maps onto Fx(k).

We know that over the algebraic closure k there is an isomorphism of A ® k to

some Mn(k) taking J to the transposition map. Thus over k we see that the Jordan

algebra 77 becomes isomorphic to the symmetric matrices. Hence N becomes the

determinant, and Fx becomes the F of the previous section, while G becomes GL„. In

particular, this shows that Gm X G is smooth, since it is so after base extension. It

follows that Gm X G has a smooth image Gx, a closed subgroup of Fx. Over k, this

Gj becomes GL„//x2, and is equal to Fred.
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The argument now is routine. Let Ax be the ring representing F,; over k, we know

that Ax ® k is isomorphic to A ® k, where A is the ring introduced just before

Proposition 6. The closed subgroup G, of Fx is represented by some quotient ring

Ax/I. As Gx becomes Fred over k, we see that

(Ax/I) 8 k = [A 8 )t)/(nilpotents).

Hence 7 consists of nilpotents. Since the field k is certainly reduced, it follows that

all elements of Fx(k) are actually in Gx(k). Finally now we observe that Gmx G —»

Gx has kernel consisting of the (X, al) with Xa2 = X, since this is true after we

extend to k. This kernel is isomorphic to Gm under the map (X, al) -* a. But the

cohomology group Hl(k/k, Gm) is trivial, and it follows that (G„, X G)(k) -* Gx(k)

is surjective [5, 18.1].    D

Thus we see that the norm similarities here in characteristic 2 are the same as in

other characteristics. But a related question brings out the special .nature of char-

acteristic 2. The Lie algebra of the group scheme Fx in this theorem is, in Jacobson's

terms, the Lie algebra leaving the generic norm semi-invariant. In other characteris-

tics, Fx equals the structure group Gx, and so Lie Fx is the same as the «^dimen-

sional algebra Lie Gx. But in characteristic 2, since Fx becomes isomorphic to F over k,

the dimension of Lie Fx is given by Proposition 3, and for n > 3 this is much larger

than n2. In other words, though the norm similarities Fx here differ only "infinitesi-

mally" from the structure group Gx, the difference reveals itself in the Lie algebra

preserving the norm.
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