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THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY

OF THE SIGNED DISTANCE FUNCTION

D. H. ARMITAGE AND Ü. KURAN

Abstract. Let D be a domain in RN with nonempty boundary 3D and let u be the

signed distance function from 3D, i.e. u = + dist according as we are in or outside

D. We prove that, for any N > 2, u is superharmonic in RN if and only if D is

convex. When N = 2, this criterion requires the superharmonicity of u in D only.

1. Throughout this paper D will denote a proper subdomain of the Euclidean

space R^, where N > 2. Thus the boundary 37) of D in RN is not empty and we can

define the distance function d from 87). The signed distance function u in R^ is

defined by

u=[d      in5'
\-d    in D',

where D is the closure of D in R" and D ' = RN \ D.

Our main result is the following

Theorem 1. The function u is superharmonic in RN if and only if D is convex.

The "if" part of Theorem 1 must be known, at least tacitly; cf. Fuchs [1, p. 11],

For completeness we sketch a proof. For every support hyperplane 77 of D let uH be

the signed distance function from 77 such that uH > 0 in D and uH is harmonic in

R^. Then u = infHuH and it follows that u is superharmonic (in fact, u is concave) in

R^, since the uH are all harmonic and u g ^(R^). The proof of the "only if" part of

Theorem 1 (cf. §3) is more involved and requires two preliminary lemmas (§2).

We note that, for example, if D is the punctured ball D = {X g R*: 0 < r = \\X\\

< 1}, then u is superharmonic in D' but not in D. With this motivation we now state

Theorem 2. If D is a planar domain and d is superharmonic in D, then D is convex.

In higher dimensions, neither D nor D need be convex.

Theorem 3. Let F be a proper closed subset of RN, where N > 2, and let d be the

distance from oF. Then d is subharmonic in F ' if and only if F is convex.

The N = 2 and N > 3 cases of Theorem 2 are proved in §§4 and 5, Theorem 3 in

§3.
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2. Lemma 1. Let D c Rv be such that D # int(7)). Then u is not superharmonic in

RN

We denote the mean-value of u on S(X0, r) = { X: \\X - X0\\ = r) by M(u, X0, r).

To prove Lemma 1, choose X0 g 37) and r0 > 0 so that B(X0, r0) = {X: \\X -

X0\\ < /•(,} c int(7)) c D. Clearly M(u, X0, r) > 0 if 0 < r < r0; thus if u were

superharmonic we must have u(X0) > 0.

Lemma 2. Let Yx, Y2 be distinct points in RN such that \\YX\\ = \\Y2\\. Let rx, r2 denote

the distances of a point from Yx, Y2, respectively, and define v in RN by v = rx A r2.

Then there exists a positive number r0such that v(O) > M(v, O, r) for all r in (0, r0).

By using a magnification, we may suppose that \\YX\\ = \\Y2\\ = 1, and by rotating

the axes, we may suppose further that Yx = (cos<í>, sin<i>,0,... ,0) and Y2 =

(-cos d>, sin <f>, 0,... ,0), where 0 < <j> < m/2.

If X = (xx,...,xN) g R^andr = \\X\\, then, writing

/(X) = r2 — 2\xx\ cos<i> — 2x2sin4>,

we have

v(x) = (x+f(x))1/Ux + \f(x)-

Hence

M(v,0, r) < 1 + hM(f,0, r) = X + \r2 -(cos<j>)M(\xx\,0, r).

Since M(\xx\, O, r) is a positive multiple of r and cos d> > 0, we have M(v, O, r) < X

= v(O) when r is small.

3. To prove the "only if in Theorem 1, suppose that D is not convex. If D is

convex, then Lemma 1 implies that u is not superharmonic in R^, since then int(D)

is convex [2, Theorem 1.11] and so D ¥= int(D).

Now suppose that D is nonconvex. A key result for this case is Motzkin's theorem,

which states that a proper closed subset F of RN is convex if and only if each point

of R^ has a unique nearest point of F (cf. [2, Theorem 7.8]). Hence, taking F = D,

we may assume that (by translating the origin, if necessary) O g D' and that there

exist distinct points Y,, Y2 of D such that d(O) = \\YX\\ = \\Y2\\ > 0. Define v in R"

by v(X) = \\X- YX\\A\\X- Y2\\. By Lemma 2, there exists r0 > 0 such that

v(O) > M(v, O, r) whenever 0 < r < r0. Also, B(0, r) c D' for one of these r.

Since v( X) > d( X) for all Xin 7)' with equality when X = O, we obtain

u(O) = -d(O) = ~v(0) < -M(v,0, r) < -M(d,0, r) = M(u,0, r),

so that u is not superharmonic in D '.

The argument in the last paragraph (with D replaced by F) proves the "only if" in

Theorem 3. The proof of "if in Theorem 3 is similar to the proof of "if in

Theorem 1 (§1).

4. To prove the plane case ( N = 2) of Theorem 2, we suppose that D is nonconvex

in R2 and show that d is not superharmonic in D. There exist a point Y0 of 37), a

positive number e and a closed half-plane P with Y0 on dP such that

Pn{B(Y0,e) \{F0})c7);
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cf. [2, Theorem 4.8]. Without loss of generality, suppose that Y0 = O and P = {X:

x2 > 0}. Let X0 = (0, e/4) and B = B(X0, e/8). If X = (xx, x2) g B and Xj ¥= 0,

then d(X) > x2. Hence, by the area mean-value equality for the function x2,

f d(X)dX>   f x2dX= 7r(e/8)2(e/4) = ir(e/i)2 d(XQ),

so that the area mean-value inequality for the superharmonicity of d fails at X0.

5. Here we show by an example that in higher dimensions (N ^ 3) the super-

harmonicity of u in D does not necessarily imply the convexity of D, nor even of D.

Let ß denote the torus in R3 obtained by rotating the disc to = {(0, x2, x3):

(x2 - a)2 + x2 < 1), where a > 2, about the jc3-axis. In the case N = 3 let D = Q,

and in the case N > 4 let 7) = ß X R^-3. Clearly 7) is not convex, and neither is D.

We shall show, however, that d is superharmonic in D.

With a point X (in R^) we associate plane polar coordinates (r, 0) such that

xx = rcosO and x2 = rsind and we put p = p(A") = (xj + (r - a)2)l/2. Then

D = {X: p < X} and dD = {X: p = X).

If X & D, then, in finding d(X), we may suppose that (xx, x2, x2) g co. Let

A'o = (0, ö,0,..., 0). Then B(X,X - \\X - X0\\) c B(X0,X)cz Dandsod(X)^ X -

||X - X0\\ = 1 - p. If X= X0, then clearly d(X) = 1; if J¥ A'o, then the point T0

such that || y0 — A'o11 = 1 and A"0, X, Y0 are collinear (in that order) belongs to 37), so

that d(X)^\\X - Y0\\ = X - p. Hence, in all cases, d(X) = X - p.

Let G = {X: p = 0}. We show first that d is superharmonic in D\G by

computing the Laplacian

Ad(X) = -Ap = J&- + r-& + ^1 = ^^;

as we have 2r > 2(a — 1) > a, we get Ad < 0. Hence ¿/ is superharmonic in D \ G

and therefore satisfies the weak mean-value inequality in D \ G (that is, if S( X, r ) c

D\G, then d( X) > M(¿7, A, r)). Further, d takes its maximum value at each point

of G and therefore the mean-value inequality holds on G, too. As d is continuous, it

follows that d is superharmonic in D.
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