THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY OF THE SIGNED DISTANCE FUNCTION

D. H. ARMITAGE AND Ü. KURAN

ABSTRACT. Let D be a domain in \mathbb{R}^N with nonempty boundary ∂D and let u be the signed distance function from ∂D , i.e. $u = \pm$ dist according as we are in or outside \overline{D} . We prove that, for any $N \ge 2$, u is superharmonic in \mathbb{R}^N if and only if D is convex. When N = 2, this criterion requires the superharmonicity of u in D only.

1. Throughout this paper D will denote a proper subdomain of the Euclidean space \mathbb{R}^N , where $N \ge 2$. Thus the boundary ∂D of D in \mathbb{R}^N is not empty and we can define the distance function d from ∂D . The signed distance function u in \mathbb{R}^N is defined by

$$u = \begin{cases} d & \text{in } \overline{D}, \\ -d & \text{in } D', \end{cases}$$

where \overline{D} is the closure of D in \mathbb{R}^N and $D' = \mathbb{R}^N \setminus \overline{D}$.

Our main result is the following

THEOREM 1. The function u is superharmonic in \mathbb{R}^N if and only if D is convex.

The "if" part of Theorem 1 must be known, at least tacitly; cf. Fuchs [1, p. 11]. For completeness we sketch a proof. For every support hyperplane H of \overline{D} let u_H be the signed distance function from H such that $u_H > 0$ in D and u_H is harmonic in \mathbb{R}^N . Then $u = \inf_H u_H$ and it follows that u is superharmonic (in fact, u is concave) in \mathbb{R}^N , since the u_H are all harmonic and $u \in \mathcal{C}(\mathbb{R}^N)$. The proof of the "only if" part of Theorem 1 (cf. §3) is more involved and requires two preliminary lemmas (§2).

We note that, for example, if D is the punctured ball $D = \{X \in \mathbb{R}^N : 0 < r = ||X|| < 1\}$, then u is superharmonic in D' but not in D. With this motivation we now state

THEOREM 2. If D is a planar domain and d is superharmonic in D, then D is convex. In higher dimensions, neither D nor \overline{D} need be convex.

THEOREM 3. Let F be a proper closed subset of \mathbb{R}^N , where $N \ge 2$, and let d be the distance from ∂F . Then d is subharmonic in F' if and only if F is convex.

The N=2 and $N\geqslant 3$ cases of Theorem 2 are proved in §§4 and 5, Theorem 3 in §3.

Received by the editors July 7, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 31B05; Secondary 52A20.

Key words and phrases. Superharmonic function, distance, convex set.

2. LEMMA 1. Let $D \subset \mathbb{R}^N$ be such that $D \neq \operatorname{int}(\overline{D})$. Then u is not superharmonic in \mathbb{R}^N .

We denote the mean-value of u on $S(X_0, r) = \{X: ||X - X_0|| = r\}$ by $M(u, X_0, r)$. To prove Lemma 1, choose $X_0 \in \partial D$ and $r_0 > 0$ so that $B(X_0, r_0) = \{X: ||X - X_0|| < r_0\} \subset \operatorname{int}(\overline{D}) \subset \overline{D}$. Clearly $M(u, X_0, r) > 0$ if $0 < r < r_0$; thus if u were superharmonic we must have $u(X_0) > 0$.

LEMMA 2. Let Y_1 , Y_2 be distinct points in \mathbb{R}^N such that $||Y_1|| = ||Y_2||$. Let r_1 , r_2 denote the distances of a point from Y_1 , Y_2 , respectively, and define v in \mathbb{R}^N by $v = r_1 \wedge r_2$. Then there exists a positive number r_0 such that v(O) > M(v, O, r) for all r in $(0, r_0)$.

By using a magnification, we may suppose that $||Y_1|| = ||Y_2|| = 1$, and by rotating the axes, we may suppose further that $Y_1 = (\cos \phi, \sin \phi, 0, \dots, 0)$ and $Y_2 = (-\cos \phi, \sin \phi, 0, \dots, 0)$, where $0 \le \phi < \pi/2$.

If
$$X = (x_1, \dots, x_N) \in \mathbb{R}^N$$
 and $r = ||X||$, then, writing

$$f(X) = r^2 - 2|x_1|\cos\phi - 2x_2\sin\phi$$

we have

$$v(X) = (1 + f(X))^{1/2} \le 1 + \frac{1}{2}f(X).$$

Hence

$$M(v, O, r) \le 1 + \frac{1}{2}M(f, O, r) = 1 + \frac{1}{2}r^2 - (\cos\phi)M(|x_1|, O, r).$$

Since $M(|x_1|, O, r)$ is a positive multiple of r and $\cos \phi > 0$, we have M(v, O, r) < 1 = v(O) when r is small.

3. To prove the "only if" in Theorem 1, suppose that D is not convex. If \overline{D} is convex, then Lemma 1 implies that u is not superharmonic in \mathbb{R}^N , since then $\mathrm{int}(\overline{D})$ is convex [2, Theorem 1.11] and so $D \neq \mathrm{int}(\overline{D})$.

Now suppose that \overline{D} is nonconvex. A key result for this case is Motzkin's theorem, which states that a proper closed subset F of \mathbb{R}^N is convex if and only if each point of \mathbb{R}^N has a unique nearest point of F (cf. [2, Theorem 7.8]). Hence, taking $F = \overline{D}$, we may assume that (by translating the origin, if necessary) $O \in D'$ and that there exist distinct points Y_1, Y_2 of \overline{D} such that $d(O) = ||Y_1|| = ||Y_2|| > 0$. Define v in \mathbb{R}^N by $v(X) = ||X - Y_1|| \wedge ||X - Y_2||$. By Lemma 2, there exists $r_0 > 0$ such that v(O) > M(v, O, r) whenever $0 < r < r_0$. Also, $\overline{B(O, r)} \subset D'$ for one of these r. Since $v(X) \ge d(X)$ for all X in D' with equality when X = O, we obtain

$$u(O) = -d(O) = -v(O) < -M(v, O, r) \le -M(d, O, r) = M(u, O, r),$$
 so that u is not superharmonic in D' .

The argument in the last paragraph (with \overline{D} replaced by F) proves the "only if" in Theorem 3. The proof of "if" in Theorem 3 is similar to the proof of "if" in Theorem 1 (§1).

4. To prove the plane case (N=2) of Theorem 2, we suppose that D is nonconvex in \mathbb{R}^2 and show that d is not superharmonic in D. There exist a point Y_0 of ∂D , a positive number ε and a closed half-plane P with Y_0 on ∂P such that

$$P \cap (\overline{B(Y_0, \varepsilon)} \setminus \{Y_0\}) \subset D;$$

cf. [2, Theorem 4.8]. Without loss of generality, suppose that $Y_0 = O$ and $P = \{X: x_2 \ge 0\}$. Let $X_0 = (0, \varepsilon/4)$ and $B = B(X_0, \varepsilon/8)$. If $X = (x_1, x_2) \in B$ and $x_1 \ne 0$, then $d(X) > x_2$. Hence, by the area mean-value equality for the function x_2 ,

$$\int_{R} d(X) dX > \int_{R} x_{2} dX = \pi(\varepsilon/8)^{2} (\varepsilon/4) = \pi(\varepsilon/8)^{2} d(X_{0}),$$

so that the area mean-value inequality for the superharmonicity of d fails at X_0 .

5. Here we show by an example that in higher dimensions $(N \ge 3)$ the superharmonicity of u in D does not necessarily imply the convexity of D, nor even of \overline{D} .

Let Ω denote the torus in \mathbb{R}^3 obtained by rotating the disc $\omega = \{(0, x_2, x_3): (x_2 - a)^2 + x_3^2 < 1\}$, where $a \ge 2$, about the x_3 -axis. In the case N = 3 let $D = \Omega$, and in the case $N \ge 4$ let $D = \Omega \times \mathbb{R}^{N-3}$. Clearly D is not convex, and neither is \overline{D} . We shall show, however, that d is superharmonic in D.

With a point X (in \mathbb{R}^N) we associate plane polar coordinates (r, θ) such that $x_1 = r \cos \theta$ and $x_2 = r \sin \theta$ and we put $\rho = \rho(X) = (x_3^2 + (r - a)^2)^{1/2}$. Then $D = \{X: \rho < 1\}$ and $\partial D = \{X: \rho = 1\}$.

If $X \in D$, then, in finding d(X), we may suppose that $(x_1, x_2, x_3) \in \omega$. Let $X_0 = (0, a, 0, \dots, 0)$. Then $B(X, 1 - ||X - X_0||) \subset B(X_0, 1) \subset D$ and so $d(X) \geqslant 1 - ||X - X_0|| = 1 - \rho$. If $X = X_0$, then clearly d(X) = 1; if $X \neq X_0$, then the point Y_0 such that $||Y_0 - X_0|| = 1$ and X_0, X, Y_0 are collinear (in that order) belongs to ∂D , so that $d(X) \leqslant ||X - Y_0|| = 1 - \rho$. Hence, in all cases, $d(X) = 1 - \rho$.

Let $G = \{X: \rho = 0\}$. We show first that d is superharmonic in $D \setminus G$ by computing the Laplacian

$$\Delta d(X) = -\Delta \rho = -\left\{ \frac{\partial^2 \rho}{\partial x_{3r}^2} + r^{-1} \frac{\partial \rho}{\partial r} + \frac{\partial^2 \rho}{\partial r^2} \right\} = \frac{a - 2r}{r\rho};$$

as we have $2r > 2(a-1) \ge a$, we get $\Delta d < 0$. Hence d is superharmonic in $D \setminus G$ and therefore satisfies the weak mean-value inequality in $D \setminus G$ (that is, if $S(X, r) \subset D \setminus G$, then $d(X) \ge M(d, X, r)$). Further, d takes its maximum value at each point of G and therefore the mean-value inequality holds on G, too. As d is continuous, it follows that d is superharmonic in D.

REFERENCES

- 1. W. H. J. Fuchs, Topics in the theory of functions of one complex variable, Van Nostrand, Princeton, N. J., 1967.
 - 2. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.

DEPARTMENT OF PURE MATHEMATICS, THE QUEEN'S UNIVERSITY, BELFAST, NORTHERN IRELAND

DEPARTMENT OF PURE MATHEMATICS, THE UNIVERSITY, LIVERPOOL, ENGLAND