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THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY
OF THE SIGNED DISTANCE FUNCTION

D. H. ARMITAGE AND U. KURAN

ABSTRACT. Let D be a domain in RV with nonempty boundary 3D and let u be the
signed distance function from 9D, i.e. u = +dist according as we are in or outside
D. We prove that, for any N > 2, u is superharmonic in R" if and only if D is
convex. When N = 2, this criterion requires the superharmonicity of u in D only.

1. Throughout this paper D will denote a proper subdomain of the Euclidean
space R", where N > 2. Thus the boundary 3D of D in R" is not empty and we can
define the distance function d from dD. The signed distance function u in RV is
defined by

Y {d inD,
-d inD’,
where D is the closure of D in R¥ and D’ = R\ D.
Our main result is the following

THEOREM 1. The function u is superharmonic in R" if and only if D is convex.

The “if” part of Theorem 1 must be known, at least tacitly; cf. Fuchs [1, p. 11].
For completeness we sketch a proof. For every support hyperplane H of D let u,, be
the signed distance function from H such that u, > 0 in D and u, is harmonic in
R". Then u = inf,; u,, and it follows that u is superharmonic (in fact, u is concave) in
RY, since the u,, are all harmonic and u € % (R"). The proof of the “only if” part of
Theorem 1 (cf. §3) is more involved and requires two preliminary lemmas (§2).

We note that, for example, if D is the punctured ball D = { X € RY: 0 < r = || X||
< 1}, then u is superharmonic in D’ but not in D. With this motivation we now state

THEOREM 2. If D is a planar domain and d is superharmonic in D, then D is convex.
In higher dimensions, neither D nor D need be convex.

THEOREM 3. Let F be a proper closed subset of RN, where N > 2, and let d be the
distance from OF. Then d is subharmonic in F’ if and only if F is convex.

The N = 2 and N > 3 cases of Theorem 2 are proved in §§4 and 5, Theorem 3 in
§3.
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2. LEMMA 1. Let D  RY be such that D # int(D). Then u is not superharmonic in
R".

We denote the mean-value of uon S(X,, r) = { X: || X — X, || = r} by M(u, X,, r).

To prove Lemma 1, choose X, € dD and r, > 0 so that B(X,, r,) = { X: || X —
Xl < r,} € int(D) € D. Clearly M(u, X,, r)> 0 if 0 <r <r,; thus if u were
superharmonic we must have u( X;) > 0.

LEMMA 2. Let Y,, Y, be distinct points in RY such that ||Y,|| = ||Y,|. Let r, r, denote
the distances of a point from Y,,Y,, respectively, and define v in RY by v = r| A r,.
Then there exists a positive number r such that v(O) > M(v, O, r) for all r in (0, ry).

By using a magnification, we may suppose that ||Y;|| = ||Y,|| = 1, and by rotating
the axes, we may suppose further that Y, = (cos¢,sin¢,0,...,0) and Y, =
(—cos ¢, sin ¢, 0,...,0), where 0 < ¢ < 7/2.

If X =(x,,...,xy) € RV and r = || X||, then, writing

f(X)=r*—2|x,|cos¢ — 2x,sin ¢,
we have
o(X) = (1+ /(X)) <1+ 3/(X).
Hence
M(v,0,r)<1+iM(f,0,r) =1+ 4r>—(cosd)M(|x,],0,r).

Since M(|x,|, O, r) is a positive multiple of » and cos ¢ > 0, we have M(v,0,r) <1
= v(0) when r is small.

3. To prove the “only if” in Theorem 1, suppose that D is not convex. If D is
convex, then Lemma 1 implies that u is not superharmonic in R", since then int(D)
is convex [2, Theorem 1.11] and so D # int(D).

Now suppose that D is nonconvex. A key result for this case is Motzkin’s theorem,
which states that a proper closed subset F of R" is convex if and only if each point
of R" has a unique nearest point of F (cf. [2, Theorem 7.8]). Hence, taking F = D,
we may assume that (by translating the origin, if necessary) O € D’ and that there
exist distinct points Y, Y, of D such that d(0) = ||Y|| = ||Y,|| > 0. Define v in RY
by v(X)=||X - Y| A||X — Y,|. By Lemma 2, there exists r, > 0 such that
v(0) > M(v, 0, r) whenever 0 < r < r,. Also, B(O, r) C D’ for one of these r.
Since v(X) > d(X) for all X in D’ with equality when X = O, we obtain

u(0) = -d(0) = -v(0) < -M(v,0,r) < -M(d,0,r) = M(u,0,r),
so that u is not superharmonic in D’.

The argument in the last paragraph (with D replaced by F) proves the “only if”” in
Theorem 3. The proof of “if” in Theorem 3 is similar to the proof of “if” in
Theorem 1 (§1).

4. To prove the plane case (N = 2) of Theorem 2, we suppose that D is nonconvex
in R? and show that d is not superharmonic in D. There exist a point Y, of 9D, a
positive number ¢ and a closed half-plane P with Y, on 9P such that

PN (B(Y,,¢e) \(Yy}) c D;
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cf. [2, Theorem 4.8]. Without loss of generality, suppose that Y, = O and P = { X:
x, = 0}. Let X, = (0,¢/4) and B = B(X,, ¢/8). If X = (x,, x,) € B and x, # 0,
then d( X) > x,. Hence, by the area mean-value equality for the function x,,

f d(X)dx > f x,dX = 7(e/8)(e/4) = 7(e/8) d( X,),
B B
so that the area mean-value inequality for the superharmonicity of d fails at X,.

5. Here we show by an example that in higher dimensions (N > 3) the super-
harmonicity of u in D does not necessarily imply the convexity of D, nor even of D.

Let @ denote the torus in R obtained by rotating the disc & = {(0, x5, x3):
(x, — a)? + x? < 1}, where a > 2, about the x;-axis. In the case N = 3 let D = Q,
and in the case N > 4let D = Q X RV 73, Clearly D is not convex, and neither is D.
We shall show, however, that d is superharmonic in D.

With a point X (in RY) we associate plane polar coordinates (r, §) such that
x,=rcos@ and x,=rsinf and we put p = p(X)=(x3+ (r — a)?)"/% Then
D={X:p<1l}anddD = {X:p=1)}.

If X € D, then, in finding d(X), we may suppose that (x,, x,, x;) € w. Let
X, = (0, a,0,...,0). Then B(X,1 — || X — X,|) € B(X,,1)C Dandsod(X)>1—
| X = Xoll =1 — p. If X = X,, then clearly d(X) = 1; if X # X, then the point Y,
such that [|Y, — X, || = 1 and X,,, X, Y, are collinear (in that order) belongs to 9D, so
that d(X) < || X — Yyl = 1 — p. Hence, in all cases, d(X) =1 — p.

Let G = {X: p=0}. We show first that 4 is superharmonic in D\ G by
computing the Laplacian

0% a—2r

— +r'=+ ;

9x3. ar  yr? e

as we have 2r > 2(a — 1) > a, we get Ad < 0. Hence d is superharmonic in D\ G
and therefore satisfies the weak mean-value inequality in D \ G (that is, if S(X, r) C
D\ G, then d(X) > M(d, X, r)). Further, d takes its maximum value at each point
of G and therefore the mean-value inequality holds on G, too. As d is continuous, it
follows that d is superharmonic in D.

)

Ad(X)=—Ap=_< .10 &}
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