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FINITE OPERATORS AND SIMILARITY ORBITS

LAWRENCE A. FIALKOW AND DOMINGO A. HERRERO1

Abstract. In this note we answer the question of J. P. Williams as to which Hubert

space operators Thave the property that every similarity transformation W^TWis

a finite operator: 7" has this property if and only if its image in the Calkin algebra

satisfies a quadratic equation.

1. Introduction. Let Jif denote a complex Hubert space and \cAS£(3^) denote the

algebra of all bounded linear operators on 3tiP. An operator T in áC(Jif) is a finite

operator if 0 G W(TX - XT)~ (the closure of the numerical range of TX — XT) for

each X g ^f(Jíf). The concept of a finite operator was introduced by J. P. Williams

[25], who studied criteria for finiteness and posed several questions in this context.

In the sequel, for the case when J(f is separable, we will answer the following

question of J. P. Williams [25, Question 3]: For which finite operators T is every

similarity transformation WTW~l also finite?

In [25] J. P. Williams proved that &(Jlf) = {R g &($?): Risa finite operator} is

a closed subset of3?(3ttc) that contains each operator having a finite-dimensional

reducing subspace (see Theorem 2.3 below). From this fact it follows that^(Jif) (or,

more simply, J5") contains the set (QD) of all quasidiagonal operators in JZ'(J(?)

(defined below). Let Jt(j^) denote the ideal of all compact operators in Jf(JiT) and

let jtf(Jif) = Se(3^)/X(3^) denote the Calkin algebra; for TinSe(3^), we denote by

t the image of T in s/(Jt^ under the canonical projection. In [25, Theorem 7] J. P.

Williams proved that if T g Sf( Jif) satisfies a (nontrivial) quadratic equation, then T

is finite. More generally, it is known that if f satisfies a polynomial p of degree < 2,

then T is quasidiagonal [5, 9], hence finite. In this case, each operator S similar to T

clearly satisfies p( S) = 0, so we conclude that y (T) c &, where <f( T ) = { X'lTX:

X g £C(Jíf) is invertible} is the similarity orbit of T. The converse of this observation

is also true and thus provides the following answer to J. P. Williams' question.

Theorem 1.1. For T g jgf( jf) (Jif separable) the following are equivalent:

<A)SP(T)a3F\

(ii)^(r)c(QD);

(iii) T satisfies a polynomial of degree < 2.

In [9, Theorem 2.1] D. A. Herrero proved the equivalence of (ii) and (iii), and we

have just seen that (iii) implies (i). To prove Theorem 1.1 it thus remains to show
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that (i) implies (iii), and this we will accomplish via a sequence of preliminary results

in §2. §3 contains some observations about compact perturbations of finite operators

and an update on the status of the other questions raised by J. P. Williams in [25].

The authors wish to thank Professor William Helton of the University of Cali-

fornia at San Diego for making possible their visit to U. C. S. D. (summer, 1983),

during which this paper was written.

2. Finite operators and similarity orbits. Let sé denote a complex Banach algebra

with identity e. A state onsé is a functional/ G sé* such that/(e) = 1 = ||/||. For

x G sé, let W0(x) = {f(x): f is a state on sé }, the numerical range of x [22, 25].

W0(x) is a compact convex set containing conha(jc), the convex hull of the

spectrum of x [22, Theorem 11. For the case sé =£'(Jf?), if le^f/), then

W0(T) = W(T)~, where W(T) = {(Th, hyh^JC, \\h\\ = 1} (the spacial numerical

range of T). An element a is finite if 0 g W0(ax — xa) for each x g sé ; !W(sé)

(or J^) denotes the set of all finite elements of sé. For x g sé, a(x) and r(x) denote,

respectively, the spectrum and spectral radius of x. For operators, — and = will

denote similarity and unitary equivalence, respectively.

The basic criteria for finiteness are provided by the following result. This was

proved in [25] for the operator case, but the results of [25] show that the proof

carries over directly to the Banach algebra setting.

Theorem 2.1 [25, Theorem 4]. For a g sé the following are equivalent:

(i) a is finite, i.e., 0 G W0(ax — xa) for every x G sé ;

(ii) ||öx — xa — e\\ > 1 for every x G sé;

(iii) there exists a state f on sé such that f (ax) = f(xa)for every x g sé.

In the operator case, for A G J¡?(JT) we may reformulate the condition y (A) c !F

as follows.

Proposition 2.2. For A g áC(je),y(A) c & if and only ifO g conha(^A' - XA)

for each X g ¿e(Jc°).

Proof. Let '&(3#') denote the set of all invertible operators in £f(J^). For

r6if(jf),

conha(F) = r\{W(S-1TS)~:S g &(jC)}

[14; 24, p. 308]. Thus 0 g conha(AX - XA) for each X in £C(J(f) if and only if

0 g W(S lASSlXS - S^XSS^ASy for each X in £>(Jif) and each S in & (Jif),

i.e., SlAS g & for every 5 g ^(jT).

We next note for ease of reference some of the criteria for finiteness of operators

due to J. P. Williams [25]. For « > 1, letá?„ = {7e^(jf): F has an «-dimensional

reducing subspace}.

Theorem 2.3. (i) [25, Corollary, p. 133]& is closed in &(3f);

(ii) [25, Theorem 6]«„c5(o 1);

(iii) if A G 3F, B G Se( Jf), then A ® B <=&.
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(Statement (iii) follows from the equivalence between (i) and (ii) in Theorem 2.1.)

Recall from [8] that an operator T g y(34?) is quasidiagonal if there exists an

increasing sequence of finite rank projections, {P„}ff=1, P„ ~* 1 (convergence in the

strong operator topology), such that \\APn — P„A\\ -* 0. F is block diagonal if, with

{P„} as above, APn = PnA for each n. Let (BD) and (QD) denote the sets of all

block diagonal and, respectively, quasidiagonal operators in ¿£(3tiP)\ thus (QD) =

(BD) + jT(Jif) and (BD)" = (QD) [8], Theorem 2.3 implies that (QD) c &, and the

inclusion is proper (see below). An operator T is quasitriangular if there exists an

increasing sequence of finite rank projections {P„}, P„ -» 1, such that ||(1 — Pn)TPn\\

-» 0 [6]. T is biquasitriangular if T and T* are quasitriangular. Let (QT) and (BQT)

denote the sets of all quasitriangular and, respectively, biquasitriangular operators in

¿f(Jif); thus (QD) c (BQT) c (QT) and all inclusions are proper [6, 8, 20].

Relationships among the various classes of operators just introduced may be

further clarified with the help of the following result.

Theorem 2.4 [25, Theorem 8]. Let A g Sf(JT). The operator T = T(A) on 3f0)

defined by the matrix

(Ï l Í)
\o   0    0/

is finite if and only if A is finite.

In [20] R. Smucker proved the exact analogue of Theorem 2.4 with "finite"

replaced by "quasidiagonal", and R. Smucker's result plays a role in the proof of the

equivalence of (ii) and (iii) of Theorem 1.1 (see [9, p. 202]). For the moment, let A

denote the unilateral shift; then A is finite [25, p. 133] but not quasitriangular [6],

Thus T(A) is finite and nonquasidiagonal; however, T(A) is nilpotent and is thus

biquasitriangular [8], i.e., T(A) g &n(BQT)\(QD).

Before presenting the next result we require some preliminaries concerning

spectral sets. Recall from [16, 24] that a closed subset a of the complex plane is a

spectral set of an operator F if a(T) C a and ||r(F)|| < sup{|/-(z)|: z G a) for each

rational function r with poles off a; in this case r(a)~ is a spectral set for r(T) (see

[24]). We will employ the following facts about spectral sets:

(i) (von Neumann's Inequality [16]) The unit disk is a spectral set for every

contraction.

(ii) For F g <£( jf), W(Ty is contained in every convex spectral set of T (see [24,

p. 308]).
(iii) Let R\= {X g C: Re X > 0}. If F g &(3f) and W(T)~cz R2+, then there is a

closed disk Acfi2+ that is a spectral set for F. (To see this, recall from [15, Lemma

12] (cf. [22, Lemma 2, p. 419]) that

lim    (IIy - T|| - y) = sup{ReA: A g W(-T)) = -inf{ReÀ: A g W(T)).
y —* + oo

Since W(T)~<z R2+, it follows that there exist y, 8 > 0 such that \\y - T\\- y < -8,

whence \\y — T\\ < y — 8. Thus the unit disk is a spectral set for the contraction
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(1/(7 - 8))(y - T) (see (i)), and it follows that the disk A = {A g C: |A - y\ < 7

— 8} c R2+ is a spectral set for F.)

For k > 1, let qk denote the Jordan nilpotent k-ce\\ acting on C*. For a Hubert

space X, T S ££'(X) and a > 1, let Jf(a) denote the orthogonal direct sum of a

copies of X and let T(a) g jS?( Jf(a) ) denote the orthogonal direct sum of a copies of

T.

Lemma 2.5. qx © qi$cc) is similar to an operator that is not finite.

Proof. Observe that for any A G„S?(jf ), M(A) = 0C e T(A) is similar to

qx © q¡x). It thus suffices to exhibit an operator A such that M = M(A) is similar to

an operator that is not finite.

Let A denote an operator that is not finite. Theorem 2.4 implies that T(A) <£ &

so, from Theorem 2.1(i), there exists X^-^(X) such that 0 <£ W(TX - XT)-.

Replacing X by e UX for a suitable t > 0, we can directly assume that W( TX — XT ) '

c R2+. From (iii) above, there exists a closed disk A a R2+ that is a spectral set of

FA' - XT. Thus if p g C, Rep < 0, then the closed disk A^ = {(/1 - A)1: A g A}

(c C \(R2+y) is a spectral set of R = R(T, X,p)= (p - (TX - AT))"1; in particu-

lar, W(R)cz A^.

Proposition 2.2 implies that to showSf(M) <t !F it suffices to produce an operator

Y such that a(MY - YM) c R2+. Our construction of Y proceeds as follows. Let e

be a unit vector in C and let /,ge/|3) . Let F = e ® /: X0) -» C and let

G = g ® e: C -» ^f(3) . Let y be the operator on C © X0) with operator matrix

(c a-)- We will show that a suitable choice of / and g gives F the desired property.

The matrix of MY - YM is (T°c tx-Txt)- since °(TX ~ XT) c Rl>if

ff(Mf- FA/) € R2+,

then A7F — yM has an eigenvalue p with Rep ^ 0. A corresponding (nonzero)

eigenvector cannot be of the form v = 0 © w g C © X0) , for a matrix calculation

of (A/y- yM - ju)t; = 0 shows that ((TX - XT) - p)w = 0, a contradiction.

Thus MF - yM has an eigenvector for p of the form e © w, and a calculation shows

that pe = -FTw, w = RTGe, and thus pe = -FTRTGe. Now jti = (jtie, e) =

-( FTRTGe, e) = -((e ® T*f)R(Tg® e)e,e)= -(RTg,T*f). Let

/ =

/1

I/3J
g2

then

7Ï =
' ^2 + Ag3 \

83

0

and    T*f>

0

/1

^7i+/2



FINITE OPERATORS AND SIMILARITY ORBITS 605

Let gx = 0, let g3 be a unit vector in X, and let g2 = -Ag3; let /, = g3, f2 = -A*fx

and/3 = 0. Then h = Tg= T*f is a unit vector and thus p = -(Rh,h)& W(-R) c

R2+, a contradiction since Reju < 0. We conclude that with/and g as just described,

o(MY - YM) c R2+, so the proof is complete.

Corollary 2.6. q{cc) © q{3x) is similar to an operator that is not finite.

Proof. Let T = qx © q\co) and (using Lemma 2.5) let S be a similarity of T that is

not finite. Now q^ © q(3x) = F(00) ~ Slx\ and it follows from Theorem 2.1(h) that

S(0O) is not finite.

Remark. A cumbersome computation based on the same argument as in the proof

of [25, Theorem 8] actually shows that

L(X) =

(0
0
0

10

0
1
0
0

1 \

X
1

0/

se(x^)

is finite if and only if X 6 £C(X) is finite. Clearly, L( X) is similar to q{cc) © q\x).

For F g se(X), ae(T) = a(f) denotes the essential spectrum of F.

Lemma 2.7. Let T g £P(X) and suppose t does not satisfy a polynomial of degree

< 2. Then there exist (not necessarily distinct]) points ax, a2, a3 G ae(T) such that, for

n > 1, Sf(T)~ contains an operator unitarily equivalent to

T'

0

0

0

0
«1

0

0

\&(XW),

l3j

where T ' is unitarily equivalent to T © a,!^.

Proof. Choose a,, a2, a3 as follows:

(1) If ae(T) contains three distinct points, choose these as ax, a2, a3.

(2) If oe(T) = (a) is a singleton, then our hypothesis implies that (f— a)2 ¥= 0.

Let ax = a2 = a3 = a.

(3) If ae(T) = {a, ß) (two distinct points), then F is similar to Ta © Tß, where

ae(Ta) = {a}, oe(Tß) = {ß}, and the hypothesis implies that fa + a or fß + ß. In

the first case, let ax = a2 = a and a3 = ß; in the second case, let ax = a2 = ß and

a3 = a.

It follows from [4; 3, Theorem 9.2] that 5f(T)~ contains an operator unitarily

equivalent to An.

Proof of Theorem 1.1. It remains to prove (i) => (iii). Let T<e¿?(X) and

suppose that f does not satisfy a polynomial of degree < 2. Let ax, a2, a3 G ae(T)

be points determined by Lemma 2.7, and for each n > 1, let An g J¡f(X(4)) denote

the operator defined in Lemma 2.7. Thus, for n > 1, there exists an invertible

operator Xn: X^ X(4) normal such that \\XJX~1 - A„\\ < X. Let R = q\=    /7<°°) 1\
(00)

£C(X(,K)) and let F„ = An - «Ä; thus ||F„|| = ||F||. Lemma 2.6 implies that there
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exists an invertible operator W <=£?(X(4)) such that WRW1 is not finite. For

FG.r(Jf(4))wehave

\\WX„TX~lW-1 - F\\>\\nWRW-1 - F\\ - || W{ X'lTX„ - An)W~l\\ - \\WTnW-l\\

> n ■ dist\WRW\ &(XW)\ -\W\\W~X\(X +||F||).

Since disi\WRW-x, J^(X(4) )]> 0, it now follows that for all sufficiently large n,

disi\WXnTX-lW-\^(X{4) )]> 0. If U: X^ Xw is a unitary operator, then

U*WXnTX„-1W~lU g ¡f(T)\&; the proof is complete.

We next present an analogue of Theorem 1.1 for elements of the Calkin algebra.

For T g i£(X), y(f) denotes the similarity orbit of F with respect to the invertible

elements of sé(X).

Corollary 2.8. Let T g Çf (X ). y(f) c J^( sé(X)) if and only if t satisfies a

polynomial of degree < 2.

Proof. Since the projection of ¿£(X) onto the Calkin algebra is norm-decreasing,

it follows from Theorem 2.1(h) that if £f(t) c 3F(sé(X)), then^(F) c &(Se(X));

in this case, Theorem 1.1 implies that F satisfies a polynomial of degree < 2.

Conversely, suppose p(T) = 0 for some polynomial p of degree < 2. Let

\p: sé(X) -* y(X^ ) denote an isometric unital »-representation. If / g sé(X) is

invertible, then p(tp(J~lTJ)) = \p(J~lp(T)J) = 0, so [25, Theorem 7] implies that

\p(J~lTJ) is finite. From Theorem 2.1(h) we see that for each X g sé(X),

\\(J-1tJ)x- x(J-lfj) - x\\ = \\t(j-lfj)xL(x) -Kx)^^-1™) - X\\> X,

so another application of Theorem 2.1(h) implies that J~lTJ is finite. Thus

y(f) c 3F(sé(Xj) and the proof is complete.

3. The structure of finite operators: complementary results and open problems. In

[25] J. P. Williams raised four questions related to the structure of finite operators,

the third of which was resolved by Theorem 1.1. We next recount the status of the

other questions raised in [25]. For A g Se(X), let 8A: £C(X) -» Se(X) denote the

inner derivation on^^f7) induced by A, defined by 8A(X) = AX — XA. A classical

result of [23, 26] shows that the identity operator is not a commutator, i.e.,

1 £ RanrS^,. On the other hand, J. Anderson [2] proved that there exist operators

A <^y(X) such that 1 g (Ranó^)" (norm closure). Such operators were recently

studied by the second-named author in [11]; following [11], let

JA(X) = {A <^<e(X): X g (RanôJ"}.

JA(X) is closed under similarity and clearly JA(X)C\J¥= 0; thus there exist

operators A such that no similarity of A is finite, and this answers in the negative

[25, Question 2].

Question 3.1. If T^JA(X) or T^^(X) and F satisfies a polynomial of

degree < 2, then dist(Ran 0^-17-,^, 1) (IF in 'S(X)) is independent of W. Are there

other operators with this property?
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Question 4 of [25] asks whether Ran ó1,, can be norm-dense in J¡?(X); in [21,

Theorem 1] J. G. Stampfli showed that the dimension of ¿£(X)/{Ran8A)~ is

uncountable. Question 1 of [25] asks whether U"_,^„ is dense in &; this question,

perhaps the most important concerning finite operators, remains unsolved.

In the remainder of this section we consider finite elements of the Calkin algebra

and compact perturbations of finite operators. In [25] J. P. Williams observed that J5"

is not closed under compact perturbations; we illustrate this in the following

Example 3.2. For each n>\, there exist 7efB and F g Sf(X), with rank(F)

< n, such that F + F is not finite. Let A g JA(X) be an invertible operator with

11A11 < 1 (note that JA(X) is invariant under translation by scalars and multiplica-

tion by nonzero scalars). Let Y g &(X) satisfy \\AY - YA - 1\\ < X - |(1 + \\A\\).

Let V:X^> C" denote a coisometry and let F = A © 0C„ g SC(X©C"). Let 5 and

X denote the operators on X© C" with operator matrices of the form

•=-(¿!)'-M¿. T);
Now F g !%n  is finite, F = T — S has rank n, but S = F — F is not finite. Indeed,

the matrix of SA" — XS — 1 is of the form

ÍAY-YA-1-\V*V    \av*\

\ o -i   /'
and thus

US*- XS - 1||« (\\AY- YA - l||+i) +||UF*||

«ll^y- YA - l|| + i(l + M||)< 1.

In contrast to the preceding example, a finite operator F may satisfy F +

Jí^( X) c Jf, and we next examine this case. Suppose that F is finite, and let / be the

state of Theorem 2.1(iii). Since/ g £C(X)*, it admits a unique decomposition of the

form/ = / + /, where/(A) = trace(A'C) for a suitable trace class operator C, / is

a singular functional (that is, ker/s O X(X)), and ||/|| = ||/|| + ||/|| = 1 (see, e.g. [19,

Chapter IV, p. 50]). In [1, Theorem 10.10] J. H. Anderson proved that if/ * 0, then

F has a finite-dimensional reducing subspace. Conversely, if F g â?;; for some « > 1,

then it is easy to construct a state/satisfying condition (iii) of Theorem 2.1 such that

/ = /, (i.e., fs = 0). Combining these observations with the fact that every operator in

£f(X) is a compact perturbation of an irreducible operator [7; 10, Lemma 4.33, p.

104], we have the following result.

Proposition 3.3. The following are equivalent for T in S£(X):

(i) T + X(X) <z &(X).

(ü) There exists K G X( X) such that T + K is a finite irreducible operator.

(iii) There exists C G X(X) such that T + C G &(X)\QJ™=x@n ).

(iv) t (=&(sé(X)).

Proof. We have already observed (in the proof of Corollary 2.8) that (iv) => (i).

On the other hand, the implications (i) =» (ii) => (iii) follow immediately from the
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preceding remarks. Thus, in order to complete the proof, we only have to show that

(iii) => (iv). But this also follows from the previous observations, because if T + C g

&(X)\QJx_x@n ) the state/of Theorem 2.1 (iii) (for F + C) is necessarily singular.

Thus/: &(X) "* C induces a state <p:sé(X) -* C defined by <p(X) = f(X) (i.e.,/

can be factored through the Calkin algebra), and <p satisfies <p(XT)=f(XT) =

f(TX) = <p(TX) for all Xinsé(X), whence we deduce that t g &(sé(X)).

It is not difficult to check that every operator F of the form

(*) F= (A © B) + Key(X®X)

(where A is an arbitrary operator, B g £C(X) is block diagonal, and K is compact)

satisfies the (equivalent) conditions of Proposition 3.3. It was conjectured in [13] that

these are the only operators in£f(X) that satisfy the conditions of Proposition 3.3.

The class of operators satisfying ( * ) is rather large. In particular, it contains (QD),

and also every operator M in ¡£(X) such that R(e"\M) # 0 for some n > 1 (see

[17, 27]). (Here R<-"\M) denotes the reducing n X n essential spectrum of M in the

sense of C. Pearcy and N. Salinas [17].) In the Banach algebra setting, it is known

that if the norm and spectral radius of an element coincide, then the element is finite

(see [25, p. 133]). It is not difficult to show that if an element f of the Calkin algebra

has this property and if A G ae(T) satisfies |A| = \\T\\, then A is a normal essential

eigenvalue of F in the sense of N. Salinas [18], and thus A g R^\T) and T satisfies

(*).
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