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A WEIGHTED WEAK TYPE INEQUALITY

FOR THE MAXIMAL FUNCTION

E. SAWYER

Abstract. We show that the operator S = v~lMv, where M denotes the Hardy-

Littlewood maximal operator, is of weak type (1,1) with respect to the measure

v(x)w(x) dx whenever v and w are A¡ weights. B. Muckenhoupt's weighted norm

inequality for the maximal function can then be obtained directly from the P. Jones

factorization of Ap weights using interpolation with change of measure.

In [8], B. Muckenhoupt characterized the nonnegative functions, or weights, w on

R satisfying the weighted norm inequality (1 < p < oo)

(1) (X\Mf(x)\Pw(x)dx ^ Cr\f(x)fw(x)dx   for all/,
-co -oc

where Mf(x) = (sivpx<=,l/\I\)f,\f(y)\ dy is the Hardy-Littlewood maximal function

off, as those weights w satisfying the^ condition

(A  ) \— f w}\— ( w1-"'
1   "' [\I\J,    \l\I\J,

p-i
< C   for all intervals 7.

Later, P. Jones showed in [7] that a weight w satisfies the Ap condition if and only if

it admits a factorization

(2) w = wQw\~p where Mwj(x) < Cw-(x) for all x, j = 0,1.

More recently, M. Christ and R. Fefferman [2] have given an elementary proof of

the implication (A ) => (1) (see also R. Hunt, D. Kurtz and C. Neugebauer [5], B.

Jawerth [6] and E. Sawyer [10]), and R. Coif man, P. Jones and J. Rubio de Francia

[4] have given a short proof that (2) follows from (1) and its "dual" inequality, the

boundedness of M on Lp(w1^p ).

A natural approach to obtaining inequality (1) directly from the factorization in

(2) is provided by the Stein-Weiss interpolation with change of measures theorem

[11]. In order to see what is needed, suppose (2) holds and, following the proof in

[11], define Sf = wx~lM(wxf). Note that (1) can be rewritten

(3) f\Sffw0wx^cf\f\Pw0wx    for all/.
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Now S is bounded on Lx(w0wx) simply because Mwx < Cwx and thus (3) will follow

from the usual Marcinkiewicz interpolation theorem provided that S is of weak type

(1,1) with respect to the measure w0(x)wx(x) dx.

Theorem. Suppose v and w satisfy the Ax condition, i.e. Mv(x) < Av(x) and

Mw(x) < Bw(x) for all x. Then

(4) / v(x)w(x) dx < Cf    g(x)w(x) dx   for all g > 0 on R,
J{Mg>v) ■'-co

where the constant C depends only on A and B. This shows (with g = X~xfv) that the

operator Sf = v~lM(vf) is of weak type (1,1) with respect to v (x)w(x) dx.

It would be of interest to obtain an analogue of the above approach for two

weight inequalities and other operators, specifically the Hilbert transform. Regard-

ing earlier work and other weighted weak type inequalities for the maximal function,

see K. Andersen and B. Muckenhoupt [1], B. Muckenhoupt [8] and especially the

treatment given by B. Muckenhoupt and R. L. Wheeden in [9] from which our proof

borrows heavily. The letter C will denote a positive constant that may change from

line to line and |£|(, = jEv(x) dx, \E\ = ¡E dx for v ^ 0 on R, E c R.

Proof. It suffices to prove (4) for g > 0 bounded with compact support. Fix such

a g. For k g Z, let ( If }j be the collection of component intervals of the open set

ttk = {Mv > 3k} n {Mg > 3k}. Denote by T the set of pairs (k, j) such that

if n {v < 3k +1} has positive measure. For (k, j) g T we then have

3* .    .-i ,.
(5) — < v4-1essinfMi; < essinfu < \lk\    / v

A ,k ,k i J i    J,k
v 'j j

< essinfMi; ^ ^essinfi; < 3k + 1A,
,k ¡k

since Mt; < Av. Thus

(6) ( w< 3£3*|{3* < u< 3* + 1} n{Mg> v}\w
J{Mg>v) k

<3l3*      I      |//|w
k       j:(k,j)eT

^3a £ fcfVAfel by&-
(A.7)er

For N g Z, set TN = {(k, j)^T:k> N}. We shall prove

(7) V      |/*|~ |/*| |/*|   ^Cfgw   for all A
v    ' *-^ 171      \  J  \v\  J  \w J   °

(k,j)sTN

with a constant C independent of N. The proof uses a variant of an idea of B.

Muckenhoupt and R. L. Wheeden [9; Proof of Lemma 2]. First note that for (k, j),

(t, s) G TN with k ^ t, either if c I's or /,* n I's = 0. Fix N and let G0 consist of

the indices (k, j) g Tn for which if is maximal in {I's: (t, s) g r^}. Since Mv < Av,

v satisfies the Ax condition [3] and thus there are positive constants C, e such that

(8) l^ln/l/lt, < C(|F|/|7|)E   whenever £ is a subset of an interval 7.
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Choose 0 < 8 < e. If Gn has been defined, let G„ + x consist of those (k, j) g T for

which there is (t, s) g Gn with /* c 7/ and

(9)

0)       -"T f   w > 3<k-')S— f w,

(ii)     —r ( w < 3(/-')S— f w   whenever (/, i) e T and /* c 7/ c /'.
17/1-F' ,ji.Jn J *

Let F = U^_0G„. Following [9], we claim that

(io) i i/rfVl k/l <c L k/rV/l k/*l •v       ' "" 17 1      I   7  11> I  7  I tv *—'        17  1      I  7  I ¿j I  7  I w
Oc.jyeTN (k,j)eP

To see this, suppose (/, i) g P and let <2 = Q(t, s) denote the set of indices

(k, j) G T such that // c I's and there is no (/, /) g P with If c 7/ c 7/. Then by

(9)(ii)

v   |F?fVl \ik\ <   y   s^-'H/'rVl \ik\£-*     \ j I   \ j \w\ j I» ̂      ¿- I «I   r^kry h.
(A.y)e<2 (k.j)sQ

*í\l'\~ \l'\   y 3<*-'>Ä|/'| C
it-/

|{Mi; > 3k) n/'|

I7.'|
by (8).

However, Mv < /lu and so \{Mv > 3k} n //] < «43~*|//IB < /l23f~*+1|//l by (5) and

thus the final line above is dominated by

-1 °°

cA2e\i;\  j;UJlE3<*-')83('-*+1)e
I       •*   I I       J   I  " I       ■*   I c      "™

k = t

< C\l's[X\Vs\w\lX   sinceO<Ô<e.

Inequality (10) now follows since(Ju s)ePQ(t, s) = TN.

For each k in Z, let {Jk)i be the component intervals of {Mg > 3k). Then

M(Xjkg) > 3A on Jk and so

(11) \jk\^\{M(Xjkg)>3k}\^C3-kj^g,

since the maximal operator is of weak type (1,1) with respect to Lebesgue measure.

Given an interval If, there is a unique / = i(k, j) such that if c Jk. From now on,

whenever the index /' appears in a summation over (k, j), it is understood that

' = ¡(k, j)- We have

(12) I     \lk\'l\lk\\lk\   <3A     £     3*|//*l     fey(5)
(k,j)<=P (k,j)eP

1

(k,j)ep 1-7, I \ 4'
<<* e r^|/*k/L by(n)

= CAf
El 7*1    lr*l  „

I   »    I       17   1H1     *'i

(k,j)eP
8-
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Let h(x) = £(£tj)ep\Jjk\~1\lf\wXjk{x)- It remains to show that h(x) < Cw(x) for

all x g R. So fix x g R. For any given k, there is at most one interval Jk containing

x. We denote this interval, when it exists, by Jk. Let Pk = {(k, j) g P: if c Jk)

and let G = {k: Pk ¥= 0}. Let k0 be the least integer k in G and if /c0, kx,...,k„

have been defined, choose kn + x in G such that kn + x > kn and

(i)        —-— /      iv > 2—— /   w,

(ii)      —-fw^2—-fw   fork„^l< kn + x,lŒG.

We now claim that

I'/L
(14) £ L     77f <C   for»>0.

A:„5i/<A„+1

First, we observe that if (/, j) g F„ /cn < / < rCB+1, then

|7/|7,; 25     |/'| /,/

To see this, let If- be the component of S2A that contains ij. We claim that

(kn, s) G T. Since P c T, it suffices to consider the case (&„, 5) £ F. Since &„ g G,

Jk" must contain at least one interval of the form Ik- with (kn, u) g P and it follows

that Jk" D /*». By the definition of Qk , we must have Mv < 3k" at one of the

endpoints of if". Thus the average of v over /*■ is at most 3k" and so

\{v < 3*»+1} nt*'\> 0.

Hence (<:„, i) e T by definition. Now let Ik denote the smallest interval containing

/*■ with (k,a) g P. Sufficiently many applications of (9)(i) yield

\ (w>3^k's\( w

and, since (kn, s) g T, (9)(ii) shows that

-^- f w < 3(k"~k)S-\- f w.

Finally, from (13)(ii) we have

1     7 2      Í nor 2B    f—- / w < —— /   w < 2Z?essinfw < —— /   w
\J'\jj>        \Jk»\Jjk- Jk~ \lf"\Jiï"

and, combining this with the two previous inequalities, we obtain (15). From (15)

and the assumption Mw < Bw we obtain that for kn < / < kn + x
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Since w satisfies the Ax condition [3], there are positive constants C, tj such that

\E\wAI\w < C(\E\/\I\y whenever E c an interval 7. Taking for E the set on the

right side of (16), we conclude from the Ax condition and the inequality

|{w>A}n/i|<A-V'L,

that \E\W is dominated by |/'|H, times C(2B2/3u~k")Sy.   It follows that the left

side of (14) is dominated by T.f_k C3{k"~i)Sv < C, as required.

We can now complete the proof. We have

h(x)=      Z
(k.j)eP \J¡

I I
n le G

n \Jk"\ JJk"

by (13)(ii) and (14). By (13)(i), this last sum is dominated by twice its largest term

which in turn is dominated by CMw(x) < CBw(x). Thus h(x) < Cw(x) and,

combining this with (10) and (12), we obtain (7). Letting N | -oo and using (6), we

obtain (4).
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