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CRITERIA FOR A BLASCHKE QUOTIENT TO BE

OF UNIFORMLY BOUNDED CHARACTERISTIC

SHINJI YAMASHITA

Abstract. Criteria for a quotient Bl/B2 of Blaschke products B¡ and B2 to be of

uniformly bounded characteristic are proposed in terms of interpolating sequences.

A Blaschke product is a holomorphic function

*«M)-&(%){ a„z

in the disk D = {\z\ < X), where {an} is a sequence of complex numbers in D with

E(l - |a„|) < oo, with the convention \an\/an = 1 for an = 0. A Blaschke quotient is

a meromorphic function Bx/B2, where Bx and B2 are Blaschke products with no

common zero. J. A. Cima and P. Colwell [2, Theorem 2] established a criterion for

Bx/B2 to be normal in D in the sense of O. Lehto and K. I. Virtanen [4] in terms of

interpolating sequence in the sense of L. Carleson [1], Here a function / meromor-

phic in D is normal if (1 - |z|2)/*(z) is bounded where,/* = |/'|/(1 + |/|2), and

a sequence of points {z„} in D is interpolating (or uniformly separated [3, p. 148]) in

Dif

mf n
n>l k = l

k*n
1  - ZkZn

> 0.

If {z,,} is interpolating in D, then E(l - |z„|) < oo. Cima and Colwell's cited result

is (I) «• (II) in

Theorem. Let {aj,1*} and {a(2)} be disjoint interpolating sequences of points in D,

and set

Bk(z) = B(z;{a^}),       k = 1,2.

Then the following are mutually equivalent.

(I) Bx/B2 is normal in D.

(II) The sequence {aj,1'} U {ai2)} is interpolating in D.

(III) Bx/B2 is of uniformly bounded characteristic in D.
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To explain the terminology we set fw(z) = f((z + w)/(X + wz)), z,w g D, for /

meromorphic in D. We call /, of uniformly bounded characteristic in D, f g UBC

for short, if

T(X,fw)=    lim   T(r,fJ,       w g D,
r—1-0

is bounded in D, where

F(r,/J = /U0_1 //     (Lf(z)2dxdy
J0 1/  J\z\<t

is the Shimizu-Ahlfors characteristic function of fw; see [5]. Since / = /0, each

/ G UBC is of bounded (Nevanlinna) characteristic in D.

Since each / g UBC is normal in D by [5, Theorem 3.1, p. 383], (III) => (I) is

obvious. To establish our Theorem the remaining work is

Proof of (II) => (III). First we observe, for/ = Bx/B2, the identity

(1) T(X,fJ = F(w)-F(w),       wGZ),

where F= ^logdÄjl2 + |7?2|2) and F is the least harmonic majorant of the sub-

harmonic function Fin D. For the proof of (1) we fix w g D, and we let

D(w, r) = {f; |(f - w)/(X - w£)\ <r),       0 < r < X.

Then the Green function of D(w, r) with its pole at w is

gr(f ) = log|r(l - wl)/U - w)\,        f S 7)(w, r).

Since the Laplacian AF = 2/*2 in D, the change of variable z = (f - w)/(l - ivf ),

f g D(w, r), together with

T(r,fJ = TT-if Í     (fw)*(z)2\og\r/z\dxdy,
J  J\z\<r

derived from [5, (2.5), p. 352] for/,,, yields

T(r, fw) = {2tt)-1(J (AF(f ))gr(f ) # ¿t,.

The Green formula

jj(m - *A+) ** = JTJ*!£ - *|*) *
for G = £>(w, r)\F»(w, e) (0 < e < r), <f> = gr, ^ = (2w)_1F, in the limiting case

e 10, then reads

(2) T(r,fw) = Fr(w)-F(w),

where Fr is the least harmonic majorant of F inD(w, r); to be more precise,
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where 3/3»' denotes the derivative in the inward-normal direction and ds is the

element of arc length. Letting r Î1 in (2) we obtain (1).

Suppose (II), and suppose then that

inf F(z) = -oo.

Then there exists a sequence {zn} in D such that

\Bx(z„)\2+\B2(zn)\2^0.

By the same argument as in [2, p. 798], this contradicts our hypothesis (II). Therefore

Fis bounded from below and above inD:-oo < m < F < logvT. Thus,

F -F ^ logv7^ - m    in D,

whence/g UBC by (1).

Remark. It follows from (II) that

(IV) inf(|51(z)|2+|Jß2(z)|2)>0.

Our proof shows that (IV) => (III).
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