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CONVEX SETS WITH

THE LIPSCHITZ FIXED POINT PROPERTY ARE COMPACT

Abstract. Let K be a noncompact convex subset of a normed space X. It is shown

that if K is not totally-bounded then there exists a Lipschitz self map / of K with

inf{||.v - /(x)||: a- e K) > 0, while if K is totally-bounded then such a map does

not exist, but still K lacks the fixed point property for Lipschitz mappings. It follows

that a closed convex set in a normed space has the fixed point property for Lipschitz

maps if and only if it is compact.

1. Introduction. In [4] Klee proves that a noncompact convex set in a normed

space lacks the fixed point property for continuous maps.

In this note we extend this result to Lipschitz mappings.

Let (K, d) and (S, p) be metric spaces. A function/: K —> S is a Lipschitz map if

P(f(x),f(z))
\\f\\L = sup(- -:x,z g K\ < oo.

(K,d) has the Lipschitz fixed point property (Li.p.p.) if every Lipschitz self map of

K has a fixed point. (K, d) is said to have the approximate Lipschitz fixed point

property (approx. L.f.p.p.) if for every Lipschitz self map f of K inf{d(x, f(x)):

x g K} = 0. Our main result is the following

Theorem 1. Let K be a noncompact convex set in a normed space.

(i) If K is not totally-bounded then it lacks the approx. L.f. p. p.

(ii) If K is totally-bounded then it has the approx. L.f.p.p., but lacks the L.f.p.p.

In [2] Benyamini and the second named author show that the closed unit ball in

an infinite dimensional normed space lacks the approx. L.f.p.p. Applying Theorem

l(i) to Banach spaces we obtain a more general result.

Theorem 2. A closed noncompact convex set in a Banach space lacks the approx.

L.f.p.p.

Combining Theorem 1 with the Schauder fixed point theorem we obtain

Theorem 3. A convex set in a normed space has the L.f.p.p. if and only if it is

compact.
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In §2 we introduce a metric space A which plays a central role in the proof of

Theorem 1, and state 3 propositions which expose the main properties of A. Then we

prove Theorem 1. The propositions will be proved in subsequent sections. Through

this note the word "space" will always refer to a metric space, and "function" or

" map" to Lipschitz mappings, even if not stated explicitly.

2. The space A and proof of Theorem 1. For a set X let lx(X) denote the Banach

space of bounded real valued functions on X with the norm \\f\\x = sup{|/(x)|:

x G X). In particular for the set N of positive integers lx — lx(N) is the Banach

space of bounded real sequences* = (xx, x2, x3,...) with the norm H^H^ = sup„|x„|.

For n g N let en = (0,0,..., 0,1,0,0,... ) G /^ be the « th unit vector, and set

A„ = conv{0, en,en + x},       n g N;    and    A=   \J A„.
»e/V

In subsequent sections we shall show that the metric space A (with the metric

induced from lx) enjoys the following properties:

Proposition 1. The space A as well as the spaces R + = {t g R: / > 0} and

(0,l] = {/eA:0</< 1} (with the metric induced from R) are Lipschitz absolute

retracts.

Definition. A space A' is a Lipschitz absolute retract (L.A.R.) if whenever a space

Y contains A as a closed set, there exists a Lipschitz retraction r: Y -» X.

A mapping h: K -* S is a Lipschitz equivalence if h is Lipschitz, one-to-one, and

hl is Lipschitz. If there exists a Lipschitz equivalence of K onto S then K and 5 are

said to be Lipschitz equivalent.

Two metric functions d and p on a set A. are equivalent if the identity map id:

(K, d) -» (K, p) is a Lipschitz equivalence.

Proposition 2. Let K be a noncompact convex subset of a normed space.

(i) If K is not totally-bounded then it contains a closed set which is Lipschitz

equivalent to either A or R+.

More precisely: If some bounded subset of K is not totally-bounded then K contains a

closed set which is Lipschitz equivalent to A; while if some ball {x g K: \\x — x0|| < 1}

in K is totally-bounded (and K itself is not) then K contains a closed set which is

Lipschitz equivalent to R+.

(ii) If K is totally-bounded then it contains a closed set which is Lipschitz equivalent

to (0,1].

Proposition 3. A lacks the approx. L.f.p.p.

Proof of Theorem 1. Theorem l(i), and the second part of Theorem l(ii) follow

from Propositions 1, 2, and 3, and the following

Lemma. Let (A, d) be a metric space, and let B be a Lipschitz retract of A. If B

lacks the L.f.p.p. (the approx. L.f.p.p.) then so does A.

Proof. We prove for the approx. L.f.p.p. Let r: A -»fibea retraction, and let /:

B -* B be a map with inf{d(x, f(x)): x g B) = a > 0. Let g: A -» A be defined by
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g = / o r, and e = a/(\\g\\L + 2). (Note that ||g||L < ||/||L • \\r\\L.) Let a g A \ B. If

d(a, B)> e then d(a, g(a)) > d(a, B) > e. If d(a, B) < e let b g B be such that

d(a, b) < e, and then

d(a,g(a)) > d(b,g(b))-d(a,b) - d(g(a), g(b)) > a - e - \\g\\Le = e.

Hence d(a, g(a)) > e for all aei.

For the first part of Theorem l(ii), let AT be a noncompact totally-bounded convex

subset of a normed space X, and let/: K —> K be a Lipschitz map. Let A" denote the

completion of X, and A the closure of K in X. Then A' is compact, and / admits an

extension /: K —> K. By the Schauder theorem / has a fixed point x0 G K. Let

{xn)n^N c A be a sequence which converges to x0. Then {xn) is an approximate

fixed point for /, i.e. lim„ d(xn, f(xn)) = 0, and it follows that K has the approx.

L.f.p.p.

3. L.A.R.'s, L.A.E.'s, and proof of Proposition 1.

(1) Definition. A metric space A is a Lipschitz absolute extensor (L.A.E.) if for

every space W, a closed subset Z of W, and a map /: Z -> A, / admits an extension

/: W -> X. If there exists a\> 1 such that \\f\\L < a||/||l, then X is said to be a A

L.A.E.

(2) Example [6, Theorem 1], R is a 1 L.A.E.

Proof. Let/: Z -» R be a map, then/(w) = sup{/(z) - ||/||z d(z, w): z g Z} is

an extension of/with ||/||z = ||/||L.

(3) Corollary. For every set A, lx(A) is a X L.A.E.

Proof. Apply (2) to each coordinate/(a,- ), a g A, of a map/: Z -» lx(A).

(4) Theorem. A metric space X is a L.A.R. if and only if it is a L.A.E.

The following Lipschitz version of a theorem by Hausdorff [3] will be applied in

the proof of Theorem 4. Our proof follows that of Arens [1]. (See also [5] for a local

version.)

(5) Theorem. Let X and W be spaces, Z c W closed, and f: Z -* X a map. There

exists a space Y which contains X (isometrically) as a closed set, and an extension g:

W -» Y off.

Proof. Note first that Xis isometric to a subset of lx(X). (x '-* d(x,■ ) — d(-, xQ)

is an isometry, where x0 G X is some fixed point.) Set B = lx(X) X R, we realize

lx(X) in B as lx(X) X {0}, and we may assume that X c lx(X) X {0} c B.

So, in particular/: Z -» lx(X) X {0}, and since this is a L.A.E. (by Corollary (3))

/ admits an extension h: W -» /^ A) X {0}. Let g: H7 -» fi be defined by g(w) =

/¡(w) + (0, d(w, Z)) and set 7 = g(W) U A. One checks easily that X is closed in Y

and that g|Z =/.

Proof of Theorem 4. L.A.E. => L.A.R. Let A be a L.A.E., and let Y contain A as

a closed set. Then an extension r: Y -* X of the identity mapping id: A -> X is a

retraction.

L.A.R. =» L.^.£. Let Abe a L.A.R., let Z c H/be closed, and let/: Z -> A"be a

map. By (5), there exists a space y which contains A as a closed set, and an
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extension g: W -> Y of / Since X is a L.A.R. there exists a retraction r: T —> A.

Then/= r»g: H7 —> Ais an extension off.

(6) Corollary. ^ retract of a L.A.R. is a L.A.R.

Proof. Let A be a retract of a L.A.R. Y with a retraction r: Y -* X. We prove the

X is a L.A.E. Let Z c W be closed, and /: Z -* A' be given. Then also f:Z—>Y,

and since y is a L.A.E. there exists an extension g: H7 —> Y of / It follows that

f = r ° g: W -» A is an extension of/.

(7) Corollary. If Xis Lipschitz equivalent to a L.A.R. then it is a L.A.R.

Proof. This is trivial for a L.A.E., and hence follows from (4).

(8) Proposition. There exists a Lipschitz retraction r: lx -* A.

Proof. We consider lx as a lattice with the natural order. Note that for x g A

and v* g ¡K 0 < y < x implies v- G A. Let e «= (1,1,1,...) e lx, and x g lx. Set

E(x) = {e: e > 0, (x - ee) A 0 G A}.

Clearly ||jc|| g E(x). Let e: lx -* R+ be defined by e(x) = inf E(x). Then £ is a

Lipschitz map with ||e||z = 1. Indeed, for x and y in lx,x < y + \\x — y\\. Hence

e(y) + \\x - y\\ g E(x) and it follows that e(x) < e(y) + \\x - y\\, and by symmetry

\e(x) — e(y)\ < \\x - y\\. Let now r: lx -» A be defined by r(x) = (x - e(x) ■ e) A 0.

Then r is a retraction and \\r\\L < 2.

Proof of Proposition 1. The fact that A is a L.A.R. follows from (6), (3), and

(8). Since R+ is a retract of R, it is a L.A.R., too. To prove that (0, l] is a L.A.R.,

we show that [0,1) is a L.A.E. So let Z c W closed and /: Z -» [0,1) be given.

Then also/: Z —> [0,1] and since [0,1] is clearly a L.A.E., there exists an extension

g: W ~» [0,1] of/. Then

1
7» = g(w)-—-77-7^: W-[0,1)

1 + a( w, Z)

is an extension off.

4. Proof of Proposition 2. Let A be a noncompact convex subset of a normed

space X. We distinguish between the following two cases: Case (i): K is not

totally-bounded, and Case (ii): K is totally-bounded.

Cases (i). Here also we separate the proof into two cases.

Cases (i)a. Some bounded subset of K is not totally-bounded. In this case we may

assume without loss of generality that 0 g A, and that Kx = {x g K: \\x\\ < 1} is

not totally-bounded. Hence, there exists some r > 0 such that Kx cannot be covered

by finitely many balls of radius 2r. It follows that

1. For every finite-dimensional linear subspace Y of A, there exists some x g Kx

with d(Y, x) ^ r.

Indeed, if not then Y + Br d Kx (where Br= {x g A: ||x|| < r}) and from the

compactness of {y g Y: \\y\\ < 2} it follows that finitely many balls of radius 2r

cover Kx.
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Now we select inductively a sequence {xn}n>x in Kx as follows: let xx g Kx be

any element with ||xj|| > r. Assume that xx, x2,.. .,xn have been selected. Set

Y = span{x,}"=1, and apply 1 to find xn+x g Kx with d(Y, xn+x) > r.

For n > 1 set

A'„ = conv{0, x„, x„ + 1}    and    A' =  (J A'„.
n»l

Then A' is a closed subset of A and is Lipschitz equivalent to A by the map h:

A -> A' which is defined by h(0) = 0, h(en) = xn, « > 1, and /i is linear on each A„.

The verification of this fact is left to the reader.

Case (i)b. Some ball {x g A: \\x — x0|| < 1} is totally-bounded. Note that in this

case A must be unbounded. Again we assume 0 g A. Let X be the completion of A,

and let K be the closure of A in X. Set Kn= {x g K: \\x\\ s£ «}. Then Ä\ is

compact, and since (« + l)_1An+1 c n~lKn c Aj, and n~lK„ contains a unit vector

for each n, (\„>x n lKn must contain some vectory0 with ||_y0|| = 1. Then ty0 g A for

all t G A*+. For each « > 1 pick some x„ g A with ||ny0 - x„|| < (n + 10)"1. Then

U,?Ssl [xn, xn+x] is a closed subset of A which is Lipschitz equivalent to R+.

Case (ii). Once again let A denote the closure of A in the completion of A. Pick

x0 g A\A and xx g A. For « > 2 select x„ g A such that

,    M       i
1-*0 + ~X1

n I n
< 2-c + io)

Then \Jn>x[x„, x,) + 1] is a closed subset of A which is Lipschitz equivalent to (0, l].

5. A fixed point free map on A. In this section we construct a Lipschitz map /:

A -» A without an approximate fixed point, i.e. inf{||jc — f(x)\\: x g A} > 0.

For x = (xx, x2,...) g A, let \\xx\\ = Z^,|x,| denote the lx norm of x. Note that

the metric functions induced on A by ||x||i and H-xjl^ = sup,|x,| are Lipschitz

equivalent, and we apply the lx norm in the construction off.

First we define/on 3A = {a: g A: \\x\\x < \) as follows:

/(0) = ex,f(\ex) = ex,f(\en) = 0 for n > 2, and/is linear on }A„ for each n > 1.

Note that f(\A) = [0, ex], and that forx g ^A,,, n > 2, with \\x\\x = }/(jc) = 0. As

a piecewise linear map,/is Lipschitzian on }A.

Next, we define /on {x g A: ||x||, 5= f}; / will map this set onto {x g A:

||x||, = 1}. Letg: {x g A: ||x||i = 1} -»   [1, 00) = {r g R: r ^ 1} be defined by

g((l - t)en+te„ + x)) = n + t,       n>l,0</<l.

g is one-to-one and onto. We shall construct a map h: {x g A: ||x||j ^ f} -»   [l,oo)

and/will be defined to be/ = g"1 ° /i. h is defined as follows:

Forx g A, ||x||, = f3>

llvll,     '   2'
/i(jc)

-^IttVI + T'   ^GAi'
*«1

X     \ 1
x^   IJA„.

^||l/ L »>2
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X=e, ek«flM«fGH0*fÜW

xe A{ £wá dose   to e,     ffo)

fi*i

xe^i  omc(  close to e* fY°)

X = e*

&=f(x)

XeArx     n>2

0= ffiAj

e*  * e««

Figure 1
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And for x g A, \\x\\x = 1, h(x) = g(x) + X. For x g A with § < \\x\\x, h is defined

to be linear on [f (x/HxHj), x/HxIlJ.
Under the metric d(r, s) = \r — s\ A X on [0,1), g is a Lipschitz equivalence, and

h is Lipschitz. Hence/ = g"1 » h is Lipschitz.

To extend / to the whole of A, note that for 0 # x G A, /(y(*/ll*lli)) and

/(§ (x/||x||i)) are in the same A„ for some n > 1. Indeed, if x g Ax then both are in

Ax, while if x <£ Ax then/(}(x/||x||1)) = 0. Hence we extend /by letting it be linear

on [\x, fx] for all x g A, Hjc]^ = 1. The extended map is still Lipschitzian. Figure

1 illustrates [0, x] and/([0, x]) for several values of x g A with ||x||, = 1.

For x g A with \\x\\x = 1, [0, x] n/([0, x]) Ç {0, x}, and since neither 0 nor x

(with \\x\\x = 1) are fixed points of/,/is fixed point free. Hence, by compactness,

inf{||x -/(x)||: x g Ax U A2} = a > 0. But for x g A,„ n > 2. \\x - f(x)\\ =

||tx — /(tx)||, where t: A„ -» A2 is the natural isometry. It follows that \\x - f(x)\\

> a for all x G A.
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