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ON FIXED POINTS OF LINEAR CONTRACTIONS

HEYDAR RADJAVI AND PETER ROSENTHAL

Abstract. It is shown that a weakly closed convex semigroup of linear contractions

on a separable Hilbert space has a common fixed point other than 0 if the operator 0

is not in the semigroup.

We prove a theorem on existence of common fixed points for certain convex

semigroups of linear operators on Banach spaces. The special case where the

semigroup is a group follows easily from Kakutani's well-known theorem [4, 5, 6]

and also, as discussions with P. Milman revealed, from the work of Brodskii and

Milman [1]. Similarly, in the case where the semigroup is commutative, our result is a

corollary of a special case of the Markov-Kakutani theorem [3, 4]. Nonetheless, it

appears that the results and corollaries given below have not been noticed before.

Corollary 4, for example, gives a sufficient condition that V^=N{A"} be the same

for all N.

The applications of the fixed-point theorem that we consider concern operators on

Hilbert space, but it seems worthwhile to state the theorem more generally.

Theorem 1. Let SCbe a strictly convex reflexive Banach space, and let £fbe a weak

operator closed separable convex semigroup of linear contractions on St. Then the

operators in i/'have a common fixed point other than 0 // and only if the operator 0 is

not in y.

Proof. Clearly, if the operator 0 is iny, then the only common fixed point is 0.

To prove the converse first recall that (Ta) -» T in the weak operator topology if

and only if ¿>(7"ax) -+ 4>(Tx), for each ¿> g 3C* and x g 3C. We require the fact that

the unit ball of 3S(SC) is weak operator compact; this can be proven as in the

better-known case of Hilbert space. (That is, consider the Cartesian product of the

closed balls of radius ||x|| in 3C, indexed by £", where each ball is given the weak

topology).

Let {Tn}™=x be a countable weak operator dense subset of ■S"; it obviously suffices

to find a common fixed point for the {Tn}. Let

00     -.

t= y — t ■

n = l  L
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this series converges in the norm topology (hence also in the weak operator

topology) of Sè( J"), and the closed convexity of ^implies ley. Now T defines a

mapping of .Shinto itself by T(S) = TS for A g </'(£? is a semigroup). Since ^is a

compact convex set, Schauder's fixed point theorem yields an operator S0 g .S^such

that TS0 = S0. Choose x g jTsuch that 50x * 0. Then

2« *„S0x S0x.

For each n 0-

2« *„S0x +        T„SnxJo- IIV'II

L    ™rA*   «       L    t77   IIVIL

and

2«o ^o5«* ** 2"o ll^o^ll

imply that the above inequalities are equations, so the strict convexity of SC implies

that Tn S0x is a multiple of £„,.„ TnS0x/2". Hence, Tn S0x is a multiple of S0x.

(Recall that .f strictly convex means that \\xx + x2\\ = \\xx\\ + ||x2|| implies {xl5 x2)

is linearly dependent). Thus, TnS0x is a multiple of S0x for every n. But {A„},

complex numbers, satisfying Z"=1A„/2" = 1 and |A„| < 1 for all n implies À„ = 1

for all n, so 7"„50x = 50x for all n. Therefore, 50x is a common fixed point for {Tn}

and, hence, for^.

Remark. As the referee has kindly pointed out, the above proof is similar to a

proof given by R. E. Brück, Jr., Properties of fixed-point sets of nonexpansive

mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.

Corollary 1. A weakly closed convex semigroup of contractions on a separable

Hilbert space has a common fixed point other than 0 if and only if it does not contain

the operator 0.

Proof. A Hilbert space satisfies all the hypotheses on .fin Theorem 1. Also, the

unit ball of operators on a separable Hilbert space is a separable metrizable space in

the weak operator topology, so every semigroup of contractions is separable.

For the next two corollaries let Sf be a weakly closed convex semigroup of

contractions on a separable Hilbert space.

Corollary 2. Let Jt denote the set of common fixed points of members of£f; then if

contains the orthogonal projection onto M.

Proof. As is well known, ||r|| < 1 and 7x = x implies T*x = x (begin an

orthonormal basis with x/||x|| and represent T with respect to it). Thus, Jt reduces

every operator in if. Now if ¡Jt-1 is a weakly closed convex semigroup of contrac-

tions on Jl^ . Since the only common fixed point of if\J(^ is {0}, Corollary 1
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implies that the 0 operator is in if\J(^ . Let P^ifbe such that P\Jtx = 0; since

T'l^'is the identity, P is the projection on^#.

Corollary 3. If if is not the semigroup consisting only of the identity, then some

operator in if has nontrivial nullspace.

Proof. By Corollary 2, if no operator in .S7*has nullspace, then the set of common

fixed points is the entire space.

The next result is a corollary of Theorem 1 in some cases but not in all. The proof,

however, is contained in that of Theorem 1.

Theorem 2. If if is a weak operator closed bounded convex set of linear operators on

a reflexive space and 0 £ if, then 1 is an eigenvalue of every operator T with the

property that S g if implies TS&if.

Proof. Let T be as stated. By Schauder's theorem, TSQ = S0 for some S0 g if.

Choose x such that 50x # 0; then TS0x = S0x, so 1 is an eigenvalue of T.

Corollary 4. If A is an injective operator on Hilbert space, and if there is a k such

that ||(1 + A)"\\ < k for every positive integer n, then the weakly closed linear span of

{A":n^N)is the same for all nonnegative integers N.

Proof. Let T = 1 + A and let if be the weakly closed convex hull of { T": n > 1}.

Since A has no nullspace, T has no fixed points other than 0. By Theorem 2, 0 g if.

Thus, given any weak operator neighborhood Hf of 0 there is a collection of

nonnegative numbers {X7};m=1 such that EjijX,■= l and Y.J=x\jTJg tT. Then

T."'=x\/Tj has the form 1 + Y.J=xkjPj(A) for suitable polynomials pj without con-

stant terms. It follows that 1 is in the weak closure of the linear span of ( A": n > 1}.

Thus, A is also in the weak closure of the linear span of {A":n > 2} (multiplication

is separately weakly continuous in each variable), and the corollary follows by a

trivial induction.
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