ON FIXED POINTS OF LINEAR CONTRACTIONS

HEYDAR RADJAVI AND PETER ROSENTHAL

ABSTRACT. It is shown that a weakly closed convex semigroup of linear contractions on a separable Hilbert space has a common fixed point other than 0 if the operator 0 is not in the semigroup.

We prove a theorem on existence of common fixed points for certain convex semigroups of linear operators on Banach spaces. The special case where the semigroup is a group follows easily from Kakutani's well-known theorem [4, 5, 6] and also, as discussions with P. Milman revealed, from the work of Brodskii and Milman [1]. Similarly, in the case where the semigroup is commutative, our result is a corollary of a special case of the Markov-Kakutani theorem [3, 4]. Nonetheless, it appears that the results and corollaries given below have not been noticed before. Corollary 4, for example, gives a sufficient condition that $\bigvee_{n=N}^{\infty} \{A^n\}$ be the same for all N.

The applications of the fixed-point theorem that we consider concern operators on Hilbert space, but it seems worthwhile to state the theorem more generally.

THEOREM 1. Let \mathscr{X} be a strictly convex reflexive Banach space, and let \mathscr{S} be a weak operator closed separable convex semigroup of linear contractions on \mathscr{X} . Then the operators in \mathscr{S} have a common fixed point other than 0 if and only if the operator 0 is not in \mathscr{S} .

PROOF. Clearly, if the operator 0 is in \mathcal{S} , then the only common fixed point is 0.

To prove the converse first recall that $(T_{\alpha}) \to T$ in the weak operator topology if and only if $\phi(T_{\alpha}x) \to \phi(Tx)$, for each $\phi \in \mathcal{X}^*$ and $x \in \mathcal{X}$. We require the fact that the unit ball of $\mathcal{B}(\mathcal{X})$ is weak operator compact; this can be proven as in the better-known case of Hilbert space. (That is, consider the Cartesian product of the closed balls of radius ||x|| in \mathcal{X} , indexed by \mathcal{X} , where each ball is given the weak topology).

Let $\{T_n\}_{n=1}^{\infty}$ be a countable weak operator dense subset of \mathcal{S} ; it obviously suffices to find a common fixed point for the $\{T_n\}$. Let

$$T=\sum_{n=1}^{\infty}\frac{1}{2^n}T_n;$$

Received by the editors December 27, 1983 and, in revised form, July 27, 1984. 1980 *Mathematics Subject Classification*. Primary 47D05, 27D20; Secondary 54H25, 47H10.

this series converges in the norm topology (hence also in the weak operator topology) of $\mathscr{B}(\mathscr{X})$, and the closed convexity of \mathscr{S} implies $T \in \mathscr{S}$. Now T defines a mapping of \mathscr{S} into itself by T(S) = TS for $S \in \mathscr{S}(\mathscr{S})$ is a semigroup). Since \mathscr{S} is a compact convex set, Schauder's fixed point theorem yields an operator $S_0 \in \mathscr{S}$ such that $TS_0 = S_0$. Choose $x \in \mathscr{X}$ such that $S_0 x \neq 0$. Then

$$\sum_{n=1}^{\infty} \frac{1}{2^n} T_n S_0 x = S_0 x.$$

For each n_0 ,

$$\left\| \sum_{n \neq n_0} \frac{1}{2^n} T_n S_0 x + \frac{1}{2^{n_0}} T_{n_0} S_0 x \right\| = \|S_0 x\|,$$

$$\left\| \sum_{n \neq n} \frac{1}{2^n} T_n S_0 x \right\| \leqslant \left(\sum_{n \neq n} \frac{1}{2^n} \right) \|S_0 x\|,$$

and

$$\left\| \frac{1}{2^{n_0}} T_{n_0} S_0 x \right\| \le \frac{1}{2^{n_0}} \| S_0 x \|$$

imply that the above inequalities are equations, so the strict convexity of \mathscr{X} implies that $T_{n_0}S_0x$ is a multiple of $\sum_{n\neq n_0}T_nS_0x/2^n$. Hence, $T_{n_0}S_0x$ is a multiple of S_0x . (Recall that \mathscr{X} strictly convex means that $||x_1+x_2||=||x_1||+||x_2||$ implies $\{x_1,x_2\}$ is linearly dependent). Thus, T_nS_0x is a multiple of S_0x for every n. But $\{\lambda_n\}$, complex numbers, satisfying $\sum_{n=1}^{\infty}\lambda_n/2^n=1$ and $|\lambda_n|\leqslant 1$ for all n implies $\lambda_n=1$ for all n, so $T_nS_0x=S_0x$ for all n. Therefore, S_0x is a common fixed point for $\{T_n\}$ and, hence, for \mathscr{S} .

REMARK. As the referee has kindly pointed out, the above proof is similar to a proof given by R. E. Bruck, Jr., *Properties of fixed-point sets of nonexpansive mappings in Banach spaces*, Trans. Amer. Math. Soc. 179 (1973), 251–262.

COROLLARY 1. A weakly closed convex semigroup of contractions on a separable Hilbert space has a common fixed point other than 0 if and only if it does not contain the operator 0.

PROOF. A Hilbert space satisfies all the hypotheses on \mathcal{X} in Theorem 1. Also, the unit ball of operators on a separable Hilbert space is a separable metrizable space in the weak operator topology, so every semigroup of contractions is separable.

For the next two corollaries let \mathcal{S} be a weakly closed convex semigroup of contractions on a separable Hilbert space.

COROLLARY 2. Let \mathcal{M} denote the set of common fixed points of members of \mathcal{S} ; then \mathcal{S} contains the orthogonal projection onto \mathcal{M} .

PROOF. As is well known, $||T|| \le 1$ and Tx = x implies T * x = x (begin an orthonormal basis with x/||x|| and represent T with respect to it). Thus, \mathcal{M} reduces every operator in \mathcal{S} . Now $\mathcal{S} | \mathcal{M}^{\perp}$ is a weakly closed convex semigroup of contractions on \mathcal{M}^{\perp} . Since the only common fixed point of $\mathcal{S} | \mathcal{M}^{\perp}$ is $\{0\}$, Corollary 1

implies that the 0 operator is in $\mathscr{S}|\mathcal{M}^{\perp}$. Let $P \in \mathscr{S}$ be such that $P|\mathcal{M}^{\perp} = 0$; since $P|\mathcal{M}$ is the identity, P is the projection on \mathcal{M} .

COROLLARY 3. If \mathcal{S} is not the semigroup consisting only of the identity, then some operator in \mathcal{S} has nontrivial nullspace.

PROOF. By Corollary 2, if no operator in \mathcal{S} has nullspace, then the set of common fixed points is the entire space.

The next result is a corollary of Theorem 1 in some cases but not in all. The proof, however, is contained in that of Theorem 1.

THEOREM 2. If \mathcal{S} is a weak operator closed bounded convex set of linear operators on a reflexive space and $0 \notin \mathcal{S}$, then 1 is an eigenvalue of every operator T with the property that $S \in \mathcal{S}$ implies $TS \in \mathcal{S}$.

PROOF. Let T be as stated. By Schauder's theorem, $TS_0 = S_0$ for some $S_0 \in \mathcal{S}$. Choose x such that $S_0x \neq 0$; then $TS_0x = S_0x$, so 1 is an eigenvalue of T.

COROLLARY 4. If A is an injective operator on Hilbert space, and if there is a k such that $||(1 + A)^n|| \le k$ for every positive integer n, then the weakly closed linear span of $\{A^n: n \ge N\}$ is the same for all nonnegative integers N.

PROOF. Let T=1+A and let $\mathscr S$ be the weakly closed convex hull of $\{T^n:n\geqslant 1\}$. Since A has no nullspace, T has no fixed points other than 0. By Theorem 2, $0\in\mathscr S$. Thus, given any weak operator neighborhood $\mathscr W$ of 0 there is a collection of nonnegative numbers $\{\lambda_j\}_{j=1}^m$ such that $\sum_{j=1}^m \lambda_j = 1$ and $\sum_{j=1}^m \lambda_j T^j \in \mathscr W$. Then $\sum_{j=1}^m \lambda_j T^j$ has the form $1+\sum_{j=1}^m \lambda_j p_j(A)$ for suitable polynomials p_j without constant terms. It follows that 1 is in the weak closure of the linear span of $\{A^n:n\geqslant 1\}$. Thus, A is also in the weak closure of the linear span of $\{A^n:n\geqslant 2\}$ (multiplication is separately weakly continuous in each variable), and the corollary follows by a trivial induction.

REFERENCES

- 1. M. S. Brodskii and D. P. Milman, On the centre of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837-840. (Russian)
 - 2. M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1962.
 - 3. J. Dugundji and A. Granas, Fixed point theory, Vol. I, PWN, Warsaw, 1982.
 - 4. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1957.
- 5. S. Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. Tokyo 14 (1938), 242-245.
 - 6. D. R. Smart, Fixed point theorems, Cambridge Univ. Press, London, 1974.

DEPARTMENT OF MATHEMATICS, DALHOUSIE UNIVERSITY, HALIFAX B3H 4H8, NOVA SCOTIA, CANADA DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO M5S 1A7, ONTARIO, CANADA