SELFADJOINTNESS OF *-REPRESENTATIONS GENERATED BY POSITIVE LINEAR FUNCTIONALS

A. INOUE

ABSTRACT. The first purpose of this paper is to prove that π_{τ} is selfadjoint when π_{ϕ} is selfadjoint and π_{ψ} is bounded, where τ is the sum of positive linear functionals ϕ , ψ on a *-algebra $\mathscr A$ and π_{τ} , π_{ϕ} and π_{ψ} are *-representations generated by τ , ϕ and ψ , respectively. The second purpose is to prove that π_{ϕ} is standard, where ϕ is a positive linear functional on $\mathscr A$ such that there exists a net $\{\phi_{\alpha}\}$ of positive linear functionals on $\mathscr A$ satisfying $\phi_{\alpha} \leq \phi$, $\pi_{\phi_{\alpha}}$ is bounded for all α and $\lim_{\alpha} \phi_{\alpha}(x) = \phi(x)$ for each $x \in \mathscr A$.

1. Introduction. Unbounded operator algebras are important in connection with quantum field theory, the representation of Lie algebras and so on. This fact has led a number of mathematicians to start studying algebras of unbounded operators (Borchers, Uhlmann, Lassner, Powers, Schmüdgen, Gudder, etc.). In particular, Powers introduced the notions of closed hermitian and selfadjoint representations in analogy with the notions of closed, hermitian and selfadjoint operators, respectively; and further he introduced the notion of standard representation which is stronger than that of selfadjoint representation. The notions of selfadjointness and standardness have been indispensable in order to study unbounded representations in detail. However, since one difficulty lies in the judgement of selfadjointness and standardness, it seems worthwhile to study these questions. From this view point, we have attacked this problem [4, 5, 9].

In this paper we obtain some results with respect to the selfadjointness and standardness of *-representations generated by positive linear functionals.

Let ϕ be a positive linear functional on a *-algebra $\mathscr A$ with identity e. The well-known GNS-construction yields a triple $(\pi_{\phi}, \lambda_{\phi}, \delta_{\phi})$, where π_{ϕ} is a closed *-representation of $\mathscr A$ on a Hilbert space δ_{ϕ} , and δ_{ϕ} is a linear map of $\mathscr A$ into the domain $\mathscr D(\pi_{\phi})$ of π_{ϕ} satisfying: $\delta_{\phi}(\mathscr A)$ is dense in $\mathscr D(\pi_{\phi})$ with respect to the induced topology $t_{\pi_{\phi}}$, and $\delta_{\phi}(xy) = \pi_{\phi}(x)\delta_{\phi}(y)$ for all $x, y \in \mathscr A$ [7]. Let ϕ and ψ be positive linear functionals on $\mathscr A$ and $\tau = \phi + \psi$. As an analogy of the well-known fact in the operator theory, we obtain that if π_{ϕ} is selfadjoint (resp. standard) and π_{ϕ} is bounded, then π_{τ} is selfadjoint (resp. standard). Further, we obtain that π_{τ} is selfadjoint if and only if π_{τ} is standard when π_{ϕ} and π_{ψ} are standard.

Received by the editors February 27, 1984. 1980 Mathematics Subject Classification. Primary 47D40, 46K10.

644 A. INOUE

We next consider a positive linear functional ϕ on \mathscr{A} such that there exists a net $\{\phi_{\alpha}\}$ of positive linear functionals on \mathscr{A} satisfying $\phi_{\alpha} \leq \phi$ for each α and $\lim_{\alpha} \phi_{\alpha}(x) = \phi(x)$ for each $x \in \mathscr{A}$. Suppose $\pi_{\phi_{\alpha}}$ is bounded for all α . Takesue proved in [9] that if π_{ϕ} is selfadjoint then it is standard. We obtain that π_{ϕ} is always standard without the assumption of selfadjointness of π_{ϕ} . Further, we obtain that π_{ϕ} is selfadjoint if and only if π_{ϕ} is standard when π_{ϕ} is standard for all α .

2. Preliminaries. We state some definitions and notation used in this paper. Let ϕ be a positive linear functional on a *-algebra $\mathscr A$ and $(\pi_{\phi}, \lambda_{\phi}, \mathfrak{S}_{\phi})$ the GNS-construction for ϕ . We now put

$$\mathscr{D}\left(\pi_{\phi}^{*}\right) = \bigcap_{x \in \mathscr{A}} \mathscr{D}\left(\pi_{\phi}(x)^{*}\right), \quad \pi_{\phi}^{*}(x)\xi = \pi_{\phi}(x^{*})^{*}\xi \quad \text{for } x \in \mathscr{A}, \xi \in \mathscr{D}\left(\pi_{\phi}^{*}\right);$$
$$\mathscr{D}\left(\pi_{\phi}^{**}\right) = \bigcap_{x \in \mathscr{A}} \mathscr{D}\left(\pi_{\phi}^{*}(x)^{*}\right), \quad \pi_{\phi}^{**}(x)\xi = \pi_{\phi}^{*}(x^{*})^{*}\xi \quad \text{for } x \in \mathscr{A}, \xi \in \mathscr{D}\left(\pi_{\phi}^{**}\right).$$

Then π_{ϕ}^* is a closed representation of \mathscr{A} , but it is not necessarily a *-representation; π_{ϕ}^{**} is a closed *-representation of \mathscr{A} ; $\pi_{\phi} \subset \pi_{\phi}^{**} \subset \pi_{\phi}^{*}$, where $\pi_1 \subset \pi_2$ means that \mathscr{D} $(\pi_1) \subset \mathscr{D}(\pi_2)$ and $\pi_1(x)\xi = \pi_2(x)\xi$ for all $x \in \mathscr{A}$ and $\xi \in \mathscr{D}(\pi_1)$.

We define the notions of bounded, standard and selfadjoint representations as follows: π_{ϕ} is said to be bounded if $\pi_{\phi}(x)$ is a bounded operator on \mathfrak{F}_{ϕ} for all $x \in \mathscr{A}$; π_{ϕ} is said to be standard if $\pi_{\phi}(x)^* = \overline{\pi_{\phi}(x^*)}$ for all $x \in \mathscr{A}$; π_{ϕ} is said to be selfadjoint if $\pi_{\phi} = \pi_{\phi}^*$. It is clear that if π_{ϕ} is bounded then it is standard, and if π_{ϕ} is standard then it is selfadjoint.

3. Selfadjointness of the *-representation generated by the sum of two positive linear functionals. In this section let ϕ and ψ be positive linear functionals on a *-algebra $\mathscr A$ with identity e and $\tau = \phi + \psi$. We consider when π_{τ} is selfadjoint. The following theorem is an analogy of the well-known fact in the operator theory.

THEOREM 3.1. Suppose that π_{ϕ} is selfadjoint and π_{ψ} is bounded. Then π_{τ} is selfadjoint.

Proof. We put

$$K_{\tau,\phi}\lambda_{\tau}(x) = \lambda_{\phi}(x) \quad \text{for } x \in \mathscr{A}.$$

Then $K_{\tau,\phi}$ is extended to the bounded linear map of \mathfrak{F}_{τ} into \mathfrak{F}_{ϕ} , which is also denoted by $K_{\tau,\phi}$. Similarly we define the map $K_{\tau,\psi}$ of \mathfrak{F}_{τ} into \mathfrak{F}_{ψ} . Since $\tau = \phi + \psi$, we have

(3.1)
$$K_{\tau,\phi}^* K_{\tau,\phi} + K_{\tau,\psi}^* K_{\tau,\psi} = I,$$

where I denotes the identity operator on \mathfrak{F}_{τ} . Since π_{ϕ} is selfadjoint and π_{ψ} is bounded, we can easily show that $\pi_{\phi}(x)K_{\tau,\phi}\supset K_{\tau,\phi}\pi_{\tau}^{**}(x)$ and $\pi_{\psi}(x)K_{\tau,\psi}\supset K_{\tau,\psi}\pi_{\tau}^{**}(x)$ for all $x\in\mathscr{A}$. Since π_{ψ} is bounded, it follows that $\pi_{\psi}(x)K_{\tau,\psi}=K_{\tau,\psi}\pi_{\tau}^{**}(x)=K_{\tau,\psi}\pi_{\tau}(x^{*})^{**}$ for all $x\in\mathscr{A}$. Hence we have

$$(3.2) K_{\tau,\psi}\pi_{\tau}(x)^* \subset \pi_{\psi}(x)^*K_{\tau,\psi}$$

for all $x \in \mathcal{A}$, which implies that

(3.3)
$$K_{\tau,\psi}^* \xi \in \mathcal{D}\left(\overline{\pi_{\tau}(x)}\right) \quad \text{and} \quad \overline{\pi_{\tau}(x)} K_{\tau,\psi}^* \xi = K_{\tau,\psi}^* \pi_{\psi}(x) \xi$$

for each $x \in \mathcal{A}$ and $\xi \in \mathfrak{F}_{\psi}$. Then it follows from (3.1) that

$$\begin{split} \left(\pi_{\phi}(x)\lambda_{\phi}(y)|K_{\tau,\phi}\eta\right) + \left(\pi_{\phi}(x)\lambda_{\psi}(y)|K_{\tau,\psi}\eta\right) \\ &= \left(K_{\tau,\phi}^{*}K_{\tau,\phi}\pi_{\tau}(x)\lambda_{\tau}(y)|\eta\right) + \left(K_{\tau,\psi}^{*}K_{\tau,\psi}\pi_{\tau}(x)\lambda_{\tau}(y)|\eta\right) \\ &= \left(\pi_{\tau}(x)\lambda_{\tau}(y)|\eta\right) \\ &= \left(\lambda_{\tau}(y)|\pi_{\tau}(x)^{*}\eta\right) \\ &= \left(\lambda_{\phi}(y)|K_{\tau,\phi}\pi_{\tau}(x)^{*}\eta\right) + \left(\lambda_{\psi}(y)|K_{\tau,\psi}\pi_{\tau}(x)^{*}\eta\right) \end{split}$$

for each $\eta \in \mathcal{D}(\pi_{\tau}(x)^*)$ and $y \in \mathcal{A}$. By (3.3) we have

$$\left(\pi_{\phi}(x)\lambda_{\phi}(y)|K_{\tau,\phi}\eta\right) = \left(\lambda_{\phi}(y)|K_{\tau,\phi}\pi_{\tau}(x)^*\eta\right)$$

for all $x, y \in \mathcal{A}$ and $\eta \in \mathcal{D}(\pi_{\tau}(x)^*)$. Hence,

(3.4)
$$\pi_{\phi}(x)^* K_{\tau,\phi} \supset K_{\tau,\phi} \pi_{\tau}(x)^*$$

for all $x \in \mathcal{A}$, which implies that

(3.5)
$$K_{\tau,\phi}^* \eta \in \mathcal{D}(\overline{\pi_{\tau}(x)}) \text{ and } \overline{\pi_{\tau}(x)} K_{\tau,\phi}^* \eta = K_{\tau,\phi}^* \pi_{\phi}(x) \eta$$

for each $x \in \mathscr{A}$ and $\eta \in \mathscr{D}(\pi_{\phi})$. Take arbitrary $\eta \in \mathscr{D}(\pi_{\tau}^*)$. By (3.4) we have $K_{\tau,\phi}\eta \in \mathscr{D}(\pi_{\phi})$, and hence it follows from (3.3) and (3.5) that $K_{\tau,\phi}^*K_{\tau,\phi}\eta \in \mathscr{D}(\pi_{\tau})$ and $K_{\tau,\psi}^*K_{\tau,\psi}\eta \in \mathscr{D}(\pi_{\tau})$, so that $\eta = K_{\tau,\phi}^*K_{\tau,\phi}\eta + K_{\tau,\psi}^*K_{\tau,\psi}\eta \in \mathscr{D}(\pi_{\tau})$. Hence, π_{τ} is selfadjoint. This completes the proof.

As in the proof of Theorem 3.1 we can prove the following

THEOREM 3.2. Suppose π_{ϕ} and π_{ψ} are standard. Then π_{τ} is selfadjoint if and only if π_{τ} is standard.

By Theorems 3.1 and 3.2 we have the following

COROLLARY 3.3. Suppose π_{ϕ} is standard and π_{ψ} is bounded. Then π_{τ} is standard.

4. Standardness of *-representations generated by approximately admissible positive linear functionals. Let ϕ be a positive linear functional on a *-algebra $\mathscr A$ with identity e. When π_{ϕ} is bounded, ϕ is said to be admissible. If there exists a net $\{\phi_{\alpha}\}$ of admissible positive linear functionals on $\mathscr A$ such that $\phi_{\alpha} \leq \phi$ for each α and $\lim_{\alpha} \phi_{\alpha}(x) = \phi(x)$ for each $x \in \mathscr A$, then ϕ is said to be approximately admissible.

Takesue proved in [9] that π_{ϕ} is selfadjoint if and only if π_{ϕ} is standard for every approximately admissible positive linear functional ϕ on \mathscr{A} . In this section we show that, for every approximately admissible positive linear functional ϕ on \mathscr{A} , π_{ϕ} is standard without the assumption of the selfadjointness of π_{ϕ} .

THEOREM 4.1. Suppose that ϕ is an approximately admissible positive linear functional on \mathscr{A} . Then π_{ϕ} is standard.

646 A. INOUE

PROOF. Since ϕ is approximately admissible, there exists a net $\{\phi_{\alpha}\}$ of admissible positive linear functionals on \mathscr{A} such that $\phi_{\alpha} \leq \phi$ for each α and $\lim_{\alpha} \phi_{\alpha}(x) = \phi(x)$ for each $x \in \mathscr{A}$. Since $\pi_{\phi_{\alpha}}$ is bounded for each α , it follows that

$$(4.1) \pi_{\phi}(x) * K_{\phi,\phi} \supset K_{\phi,\phi} \pi_{\phi}(x) *$$

for each α and $x \in \mathscr{A}$. Since $\phi_{\alpha} \leq \phi$ for each α and $\lim_{\alpha} \phi_{\alpha}(x) = \phi(x)$ for each $x \in \mathscr{A}$, we see that $K_{\phi,\phi_{\alpha}}^* K_{\phi,\phi_{\alpha}}$ converges weakly to the identity operator I on \mathfrak{F}_{ϕ} . Take arbitrary $x \in \mathscr{A}$. Since

$$\begin{pmatrix} \pi_{\phi}(x)^* \xi | K_{\phi,\phi_a}^* \eta \end{pmatrix} = \begin{pmatrix} K_{\phi,\phi_a} \pi_{\phi}(x)^* \xi | \eta \end{pmatrix}$$

$$= \begin{pmatrix} \pi_{\phi_a}(x)^* K_{\phi,\phi_b_a} \xi | \eta \end{pmatrix}$$

$$= \begin{pmatrix} \xi | K_{\phi,\phi}^* \pi_{\phi}(x) \eta \end{pmatrix}$$
(by (4.1))

for each $\xi \in \mathcal{D}(\pi_{\phi}(x)^*)$, $\eta \in \mathfrak{F}_{\phi_{\alpha}}$ and α , it follows that

$$(4.2) K_{\phi,\phi_a}^* \eta \in \mathscr{D}\left(\overline{\pi_{\phi}(x)}\right) \text{ and } \overline{\pi_{\phi}(x)} K_{\phi,\phi_a}^* \text{ then } \eta = K_{\phi,\phi_a}^* \pi_{\phi_a}(x) \eta$$

for each α and $\eta \in \mathfrak{F}_{\phi}$, which implies that

(4.3)
$$\overline{\pi_{\phi}(x)} K_{\phi,\phi_{\alpha}}^* K_{\phi,\phi_{\alpha}} \xi = K_{\phi,\phi_{\alpha}}^* \pi_{\phi_{\alpha}}(x) K_{\phi,\phi_{\alpha}} \xi$$

$$= K_{\phi,\phi_{\alpha}}^* K_{\phi,\phi_{\alpha}} \pi_{\phi}(x^*)^* \xi$$
 (by (4.1))

for each $\xi \in \mathcal{D}(\pi_{\phi}(x^*)^*)$ and α . Hence it follows that

$$\begin{pmatrix} \pi_{\phi}(x)^{*}\xi|\xi \end{pmatrix} = \lim_{\alpha} \left(\pi_{\phi}(x)^{*}\xi|K_{\phi,\phi_{\alpha}}^{*}K_{\phi,\phi_{\alpha}}\xi \right) \\
= \lim_{\alpha} \left(\xi|\overline{\pi_{\phi}(x)}K_{\phi,\phi_{\alpha}}^{*}K_{\phi,\phi_{\alpha}}\xi \right) \\
= \lim_{\alpha} \left(\xi|K_{\phi,\phi_{\alpha}}^{*}K_{\phi,\phi_{\alpha}}\pi_{\phi}(x^{*})^{*}\xi \right) \\
= \left(\xi|\pi_{\phi}(x^{*})^{*}\xi \right) \\$$
(by (4.2))
$$= \left(\xi|\pi_{\phi}(x^{*})^{*}\xi \right)$$

for each $\zeta \in \mathcal{D}(\pi_{\phi}(x)^*)$ and $\xi \in \mathcal{D}(\pi_{\phi}(x^*)^*)$, which implies that $\overline{\pi_{\phi}(x)} = \pi_{\phi}(x^*)^*$ for each $x \in \mathscr{A}$. This completes the proof.

As in the proof of Theorem 4.1 we can prove the following

Theorem 4.2. Suppose ϕ is a positive linear functional on $\mathscr A$ such that there exists a net $\{\phi_\alpha\}$ of positive linear functionals on $\mathscr A$ satisfying: π_{ϕ_α} is standard for each α , $\phi_\alpha \leq \phi$ for each α , and $\lim_\alpha \phi_\alpha(x) = \phi(x)$ for each $x \in \mathscr A$. Then π_{ϕ} is selfadjoint if and only if π_{ϕ} is standard.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience, New York, 1963.
- 2. S. P. Gudder and W. Scruggs, Unbounded representations of *-algebras, Pacific J. Math. 70 (1977), 369-382.
- 3. A. Inoue, A Radon-Nikodym theorem for positive linear functionals on *-algebras, J. Operator Theory 10 (1983), 77-86.
 - 4. _____, A class of positive linear functionals on *-algebras, preprint.
- 5. A. Inoue and K. Takesue, Selfadjoint representations of polynomial algebras, Trans. Amer. Math. Soc. 280 (1983), 393-400.

- 6. G. Lassner, Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279-293.
- 7. R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85–124.
- 8. _____, Selfadjoint algebras of unbounded operators. II, Trans. Amer. Math. Soc. 187 (1974),
- 9. K. Takesue, Standard representations induced by positive linear functionals, Mem. Fac. Sci. Kyushu Univ. Ser. A 37 (1983), 211-225.

DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY, 814-01, FUKUOKA, JAPAN