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A HOLOMORPHIC FUNCTION WITH

WILD BOUNDARY BEHAVIOR

JOSIP GLOBEVNIK1

To the memory of Dana

Abstract. Let B be the open unit ball in CN, N > 1. It is known that if / is a

function holomorphic in B, then there are x e dB and an arc A in SU {a}, with x

as one endpoint along which/is constant. We prove

THEOREM. There exist an r > 0 and a function f holomorphic in B with the property

that, if x s dB and A is a path with x as one endpoint. such that A — {X } is contained

in the open ball of radius r which is contained in B and tangent to dB at x. then

lim.eA ._,./(z) does not exist.

We denote by B the open unit ball in C", N > X. For each x g dB and r,

0 < r < 1, let D(x, r) be the open ball of radius r, contained in B and tangent to dB

at x. We prove the following

Theorem. There exist an r > 0 and a function f holomorphic in B such that if

x G dB and A is a path contained in D(x, r), except for its endpoint x, then

lim,eAr_x/(2) does not exist.

It is known that r in the Theorem has to be strictly smaller than 1 [2]; whether or

not it can be arbitrarily close to 1 is an open question.

For each x g dB and each p, 0 < p < 1, let H(px) be the real hyperplane through

px, tangent to pB at px. If A > 0 let

W(px,R) = {y g H(px): \y - px| < R}.

Thus W(px, A) is the relatively open ball in H(px) of radius R centered at px.

Lemma 1. There is an r > 0 with the following property: let 0 < a < X; there exists

L G N, numbers p,, 1 < / < L,a < px < ■ ■ ■  < pL < pl+1 — 1, and numbers R, > 0,

1 < / < ¿, such that W(x, R,) C p/+lB for every x g d(p,B), 1 < / < L, and for

each 1,1 < / < L, there is a finite set 7) G d(p:B) such that

(i) W(x, R,) O H(y)= 0 whenever x, y G T„ x # y,X < / < L;

(ii) given any y G dB there exist I, 1 < / < L, and z G 7) such that if A is a path

joining a point in aB withy, such that A — {y} c D(y, r), then A meets W(z, R ¡).
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Lemma 2. Let 0 < a < X. Let L, ph Rh and T,, 1 < / < L, be as in Lemma X. Given

e > 0 and C < oo there is a polynomial P such that

(i)ReP > ConU¡=x\JxeTW(x, R,);

(ii)\P\ < eonaB.

Proof. Choose p't: a < p\ < px < p'2 < • ■ ■ < p\ < p¡ < p'L+x < X such that for

each /, 1 < / < L, W(x, A,) c p'l+xB (x g d(p,B)). Fix /, 1 < / < L, and denote

W¡ = Uve7- W(x, R/). If 5/ > 0 and C, < oo, then, by Lemma l(i), one can prove,

similarly to the proof of Theorem 4 in [1], that there is a polynomial P¡ such that

17^1 < 8, on p',B and ReP, > C, on W¡. If we choose 8¡ and Ct properly, then

P = Y,j=xP, will have all the required properties. This completes the proof.

Proof of the Theorem. By Lemmas 1 and 2 there exist an r > 0, a sequence an,

0 < ax < ■ ■ ■ < 1, lim an = 1, and a sequence of sets W„, Wn c an + xB - anB, such

that if n g N, x g dB, and A is a path joining a point in anB with x, which satisfies

A — {x} c D(x, r), then A meets Wn; moreover, for each n G N, 8n > 0, and

C„ < oo there is a polynomial Pn such that \Pn\ < 8n on anB and ReT*,, > C„ on Wn.

If the sequence C„ is chosen inductively to increase to + oo fast enough, and if the

sequence 8n is chosen to decrease to 0 fast enough, then the series T.^=x(-X)"Pn

converges uniformly on compacta in B to a function / holomorphic in B with the

property: if x G dB and A is a path with x as one endpoint which satisfies

A - {x} c D(x, r), then

limsup Re/(z) = +oo, liminf Re/(z) = -oo.
seA,2->i zéA,z->x

This completes the proof.

To prove Lemma 1, we first prove three lemmas.

Lemma 3. Let x, y g dB and \x - y\ > 2R/p, where 0 < p < 1 and R > 0. Then

W(px, R) n H(py) = 0.

Proof.   Suppose   z g W(px, R) n 77(py<).   Then   \z\2 < p2 + A2;   i.e.,   z

g W(py, R) and, consequently, p|x — y\ ^ \z — px\ + \z — py\ < 2A, a contradic-

tion.

Lemma 4. Let 0 < r < X, 0 < p < 1, and 0 < P < 21/2. Suppose x, y G 95, anJ

|x — i'l < 7^(1 — p)1/2. Then x and y both lie on the same side of H(px). Moreover,

H(px) n D(y, r) c W(px, Q(X - p)1/2), where Q = (X - r)P + (2r)l/2.

Proof. The first statement follows from the fact that P < 21/2, which implies that

\x — y\ < (2(1 - p))1/2. Suppose H(px) n D(y, r) is not empty. Write y = ax + w,

p < a < 1, |w|2 + a2 = 1. The center of D(y, r) is at a distance of |p — (1 — r)a\

from H(px) and at a distance of (1 - r)(X - a2)1/2 from Rx. Consequently,

H(px) n D(y, r) c W(px, R), where

A = (1 - r)(l - «2)1/2 + (r2 - [p -(1 - O«]2}1'2

= (l-r)(l-a2)1/2+{[(l-p)-(l-r)(l-«)]

■[2r-(X-p)+(X-r)(X-a)}}l/2.
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Since \x-y\< P(X - p)1/2, we have (1 - a)2 + (1 - a2) < P2(X - p); hence 1 -

a < (X — p)P2/2, and, consequently,

R < (1 - r)(X - p)1/2(/>/21/2) ■ 21/2 +(2r(l - p))1/2.

This completes the proof.

Lemma 5. Lei p g N awd x g 35. TYzeve exwi a neighbourhood U cz dB of x, a«

r0 > 0, arid M G N jwc/i that, for any r, 0 < r < r0, there are finite sets Sm C U,

1 < m < M, such that U c U^f-i UveSm(>' + rB) a«J \y - z\^ pr whenever y,

z G Sm, y- # z, 1 < m < M.

Proof. T^arí 1. We prove the following. Let W c R2A/_1 be a bounded set and let

k g N. There is a p = p(&, A) g N such that, given any r > 0, there are finite sets

Tm c r2a/-15 j ^ w < Jtl) such that W7 c UiU, U„e7.m( j + rB) (in this part 5 is the

open unit ball in R2A,_1) and | y — z\ > Ar whenever y, z g Tm, j =£ z, 1 < w < it.

To do this put L = 2N - X, choose q g N such that q > kL1/2, and put p = qL.

Let r > 0. Define ScRLby

5 = {*r(íl? Í2,...,st):í( e Z, 1 </' <L}.

Observe that \y - z| > /¡r whenever y-, z g S, y =f= z. Further, let P be the set of p

points in the cube {/ g Rf : 0 < i, < kr, X < i < L), defined by

P = {(kr/q)(sx, s2,...,sL):si e Z, 1 < s, « q, 1 « i < L).

There are ¡i sets of the form y + S, where yeP, and they have the following

properties:

(a) if y g 7* and z, w g y + S, z # w, then \w — z\ 5= Ar;

(b) R£ = LL,e/,Uze,+s(2 + K),
where A is the cube {/ g RL: \t-\ < kr/q, 1 < i < L}.

Since ¿/ > kL1/2, it follows that £r/<7 < rL"1/2; hence Ac /-fi, which implies

Rz- = Uve/>UzSv+s(z + rß). Now the assertion follows from the boundedness of

W.

Part 2. There exist an open neighbourhood U' C dB of x, an open neighbourhood

K c R2N~l of 0, a constant c > 0, and a map ^ from K onto I/' such that

(1/c)|m - v\< |¥(w) - ^(u)! < c|« - v\        (u, V G F).

Let U c U ' be a compact neighbourhood of x. The statement of the lemma now

follows easily from Part 1. This completes the proof.

Proof of Lemma 1. It is enough to prove the following. Let x g dB. There exist

M g N, r > 0, a neighborhood U c dB of x, and a, 0 < a < X, such that the

following holds: Given any px, a < px < 1, there exist R > 0 and pm, 1 < m < M +

1, p, < p2 < • • • < pM < pw+1 < 1, such that W(y, r) c pm+xB (y G 3(pmB),

1 < m < Af) and, for each m, 1 < m < A7, there is a finite set S"M c d(pmB) such

that _

(i) W(y, R) n 7/(z) = 0 whenever y-, z g Sm, y- # z, 1 < am < M ;

(ii) given any y e U there exist w, 1 < w < A7, and z g Sm such that if A is a

path joining a point in pxB with y-, where A - {y} c 7)( v% /-), then A meets

W(z, R).
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To prove this let p = 9 and let U, r0, and M be as in Lemma 5. Choose P,

0 < P < 21/2, and r > 0 such that

(1) g = (l - r)P+(2r)1/2 < (2M)-l/2

and

(2) 8(l-r)+(2r)1/2/5<p.

Note that, by (2),

(3) %Q/P<P.

Choose a < X so close to 1 that

(4) 1/2 < a,

(5) 1 - a < r,

and

(6) P((X - a)/2)l/1 < r0.

Let a < px < X. Set & = (1 - px)/(2M) and let

Pm = Pi +(m- l)d       (1 <m« A/+1).

Put A = 0(1 - p!)1/2. By (1) and (4),

R < (2M)-l/2(X - Pl)1/2 = V = (pm+1 - pj/2

< (p* + i - P2,)'72       (1 < w < Af),

so W(j/, A) c Pm+15 (x g d(PmB), X < m < M).

Now let e = 5(1 - p,)1/2 • 2"1/2. By (6), e < r0. Furthermore, since (1 - px)/2 <

1 - pm (1 « m < Ai), it follows that e < 5(1 - pm)1/2 (1 < m < A/). By (5), 1 - p„,

< r (1 < m «s Ai); since P < 21/2, it follows, by Lemma 4, that if y, z g 35,

|_y — z\ < e, then both y and z lie on the same side of H(pmy), X < m < A/, and

furthermore,

if 1 < m < Af and if y, z G 35, |_y — z\ < e, then every path

(7) A, which joins a point in pmB with z and satisfies A - {z} c

£>(z, r), meets W(pmj;, 0(1 - pj'2) c W(pmy, R).

Furthermore, since e < r0, it follows by Lemma 5 that there are finite sets

Tm c 35,1 «s m < M, such that

(a) \y — z| > pe whenever y, z G Tm,y # z, 1 < w «g M;

(b)UczlJ^x\JveTm(y + eB).

Define S„ = PmTm (X < m < M).

Suppose 1 < m < M and y, z g Tm,y # z. By (a) and (3) it follows that

\y - z\ > pe > i(Q/P)e = 8(2/5) • P((l - Pl)/2)1/2

= 8ß • 2"1/2(1 - Pl)1/2 > 45.

By (4l Pm > 1/2 so, by Lemma 3, W(pmy, R) n H(pmz) = 0. This proves (i).

Suppose y g {/. By (b) there exist m, X < m < M, and z e Tm such that |j> — z| < e.

Consequently, (ii) follows from (7). This completes the proof.



652 josip globevnik

References

1. J. Globevnik and E. L. Stout, Highly noncontinuable functions on convex domains. Bull. Sei. Math. 104

(1980). 417-434.
2. _, Holomorphic functions with highly noncontinuable boundary behavior, J. Analyse Math. 41

(1982), 211-216.

Institute of Mathematics, Physics and Mechanics, E.K. University of Ljubljana, Ljubljana,

Yugoslavia


