A CANONICAL TRACE CLASS APPROXIMANT

D. A. LEGG AND J. D. WARD

ABSTRACT. Let H be a finite-dimensional Hilbert space, B(H) the space of bounded linear operators on H, and C a convex subset of B(H). If A is a fixed operator in B(H), then A has a unique best approximant from C in the C_p norm for $1 . However, in the <math>C_1$ (trace) norm, A may have many best approximants from C. In this paper, it is shown that the best C_p approximants to A converge to a select trace class approximant A_1 as $p \to 1$. Furthermore, A_1 is the unique trace class approximant minimizing $\sum_{i=1}^n S_i(A-B) \ln S_i(A-B)$ over all trace class approximants B. The numbers $S_i(T)$ are the eigenvalues of the positive part |T| of T.

1. Introduction. The question of approximating a finite-dimensional matrix by operators from some prescribed convex set in the C_p norm, $1 , has a simple answer. Namely, there is always a unique approximant due to the convexity of the class of approximating operators and the uniform rotundity of the <math>C_p$ norm. However, in general a given matrix has a "large" set of approximants in the C_p norm for p = 1 or ∞ .

The purpose of this paper is to show that the unique C_p approximants to a given finite-dimensional matrix A from a prescribed convex set converge to a "select" C_1 approximant as p tends to 1. This result answers, in the affirmative, questions 3 and 4 in [8]. In addition, the fact that the limit exists as $p \to 1$ establishes a canonical trace class approximant. Very often canonical approximants shed much light on the structure of the set of best approximants as seen in [2, 3 and 4].

2. A canonical trace class approximant. In what follows, the term operator shall refer to a bounded linear operator on a complex Hilbert space H of dimension $n < \infty$. The numbers $S_1(A), \ldots, S_n(A)$ will denote the eigenvalues of |A| listed in decreasing order, where A is a bounded linear operator on H having polar factorization A = U|A|. For $1 \le p < \infty$, the C_p norm is defined by

$$||A||_p = \left(\sum_{i=1}^n S_i(A)^p\right)^{1/p}.$$

For a given matrix A, let A'_p denote a unique nearest point in the C_p norm from a closed convex set C and let $A_p = A - A'_p$. We establish that $\lim_{p \to 1} A_p$ (and hence $\lim_{p \to 1} A'_p$) exists in the trace norm.

Received by the editors June 28, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A99; Secondary 41A65, 41A50, 47A30.

Motivated by the approach in [7] we let, for a fixed A,

$$\phi(A, p) = ||A||_p^p = \sum_{i=1}^n S_i(A)^p.$$

Then

$$\frac{d\phi}{dp}(A, p) = \sum_{i=1}^{n} S_i(A)^p \ln S_i(A),$$

and so

$$\frac{d\phi}{dp}(A,1) = \sum_{i=1}^{n} S_i(A) \ln S_i(A),$$

where In denotes the natural log.

LEMMA 2.1. If B is any cluster point of $\{A_p\}$ in the trace norm as $p \to 1$, then A - B is a best C_1 approximant to A from C, and

$$\sum_{i=1}^{n} S_{i}(B) \ln S_{i}(B) = \min_{D \in \mathcal{D}} \sum_{i=1}^{n} S_{i}(D) \ln S_{i}(D),$$

where $\mathcal{D} = \{ A - D' : D' \text{ is a best } C_1 \text{ approximant to } A \text{ from } C \}.$

PROOF. Let $p_k \to 1$ with $A_{p_k} \to B$ in the trace norm. Clearly A - B is a best C_1 approximant. Let $\Phi(x) = x \ln x$ for x > 0 with $\Phi(0) = 0$. Let $D_1 \in \mathcal{D}$ satisfy

$$\sum_{i=1}^{n} \Phi(S_i(D_1)) = \min_{D \in \mathscr{D}} \sum_{i=1}^{n} \Phi(S_i(D)).$$

It is easily checked that $\Phi(x) \le (x^p - x)/(p - 1)$ for $x \ge 0$, p > 1, and so, for each i = 1, ..., n, we have

$$\Phi\left(S_{i}(A_{p_{k}})\right) \leqslant \frac{S_{i}(A_{p_{k}})^{p_{k}} - S_{i}(A_{p_{k}})}{p_{k} - 1}.$$

Hence

$$\begin{split} \sum_{i=1}^{n} \Phi\left(S_{i}(A_{p_{k}})\right) &\leq \frac{1}{p_{k}-1} \left[\sum_{i=1}^{n} S_{i}(A_{p_{k}})^{p_{k}} - \sum_{i=1}^{n} S_{i}(A_{p_{k}})\right] \\ &\leq \frac{1}{p_{k}-1} \left[\sum_{i=1}^{n} S_{i}(D_{1})^{p_{k}} - \sum_{i=1}^{n} S_{i}(D_{1})\right] \\ &= \frac{1}{p_{k}-1} \left[\phi(D_{1}, p_{k}) - \phi(D_{1}, 1)\right]. \end{split}$$

Letting $k \to \infty$, we obtain

$$\sum_{i=1}^{n} \Phi(S_i(B)) \leqslant \sum_{i=1}^{n} \Phi(S_i(D_1)).$$

Hence

$$\sum_{i=1}^{n} \Phi(S_i(B)) = \min_{D \in \mathcal{D}} \sum_{i=1}^{n} \Phi(S_1(D)).$$

THEOREM 2.2 Let C be a closed convex set of $n \times n$ matrices and let A_p be the matrix in C with smallest C_p norm. Then $\lim_{p\to 1} A_p$ exists.

PROOF. Since the underlying Hilbert space is finite dimensional, every sequence $\{A_{p_k}\}$, $p_k \to 1$, contains a convergent subsequence in the trace norm. Hence it suffices to show that $\{A_p\}$ has a unique cluster point as $p \to 1$.

Suppose B_1 and B_2 are cluster points of $\{A_p\}$ as $p \to 1$. If we multiply B_1 and B_2 by a sufficiently large positive scaling factor, we may assume that all the numbers

$$S_i(B_1/2), S_i(B_2/2), S_i(\frac{1}{2}(B_1+B_2)),$$

i = 1, ..., n, are either 0 or greater than 2.

Let f(x) be a strictly increasing convex function such that f(0) = 0 and $f(x) = \Phi(x)$ for $x \ge 2$. By [5, Chapter 2, Theorem 4.1], we have

$$\sum_{i=1}^{n} \Phi\left(S_{i}\left(\frac{1}{2}(B_{1} + B_{2})\right)\right) = \sum_{i=1}^{n} f\left(S_{i}\left(\frac{1}{2}(B_{1} + B_{2})\right)\right)$$

$$\leq \sum_{i=1}^{n} f\left(S_{i}\left(\frac{B_{1}}{2}\right) + S_{i}\left(\frac{B_{2}}{2}\right)\right)$$

$$\leq \sum_{i=1}^{n} \left[\frac{1}{2} f\left(S_{i}(B_{i})\right) + \frac{1}{2} f\left(S_{i}(B_{2})\right)\right]$$

$$= \frac{1}{2} \sum_{i=1}^{n} \Phi\left(S_{i}(B_{1})\right) + \frac{1}{2} \sum_{i=1}^{n} \Phi\left(S_{i}(B_{2})\right).$$

Hence by Lemma 2.1, since B_1 and B_2 are the cluster points of $\{A_p\}$ as $p \to 1$, we have

$$\sum_{i=1}^{n} \Phi\left(S_{i}\left(\frac{1}{2}(B_{1}+B_{2})\right)\right) \leqslant \min_{D \in \mathscr{D}} \sum_{i=1}^{n} \Phi\left(S_{i}(D)\right).$$

Since $\frac{1}{2}(B_1 + B_2) \in \mathcal{D}$, it follows that

$$\sum_{i=1}^{n} \Phi\left(S_{i}\left(\frac{1}{2}(B_{1}+B_{2})\right)\right) = \min_{D \in \mathscr{D}} \sum_{i=1}^{n} \Phi\left(S_{i}(D)\right).$$

Hence both inequality signs in (1) and (2) must actually be equal signs. The inequality (1) implies that

$$S_i(\frac{1}{2}(B_1 + B_2)) = S_i(B_1/2) + S_i(B_2/2)$$

for each $i=1,\ldots,n$ since f is strictly convex, while (2) implies that $S_i(B_1)=S_i(B_2)=S_i((B_1+B_2)/2)$ for all i; i.e., $\|B_1\|_p=\|B_2\|_p=\|(B_1+B_2)/2\|_p$. From the strict convexity of the C_p norm, it follows that $B_1=B_2$. Hence there exists a unique cluster point of $\{A_p\}$ as $p\to 1$ and this completes the proof.

REMARK. A similar result seems likely in the case $p = \infty$ if the approximating class is the set of positive operators. We conjecture that the best C_p approximants converge in the operator norm to the approximant P_m as $p \to \infty$. See [8].

REFERENCES

- 1. R. H. Bouldin, Positive approximants, Trans. Amer. Math. Soc. 177 (1977), 391-403.
- 2. R. H. Bouldin and D. D. Rogers, Normal dilations and operator approximations, Acta Sci. Math. (Szeged) 39 (1977), 233-243.
- 3. C. K. Chui, P. W. Smith and J. D. Ward, Approximation with restricted spectra, Math. Z. 144 (1975), 289-297.
 - 4. _____, Favard's solution is the limit of $W^{k,p}$ splines, Trans. Amer. Math. Soc. **220** (1976), 299–305.
- 5. I. C. Gohberg and M. G. Krein, *Introduction to the theory of linear nonselfadjoint operators*, Transl. Math. Mono., Vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
 - 6. P. R. Halmos, Positive approximants of operators, Indiana Univ. Math. J. 21 (1971), 951-960.
 - 7. D. Landers and L. Rogge, Natural choice of L₁-approximants, J. Approx. Theory 33 (1981), 268–280.
- 8. D. D. Rogers and J. D. Ward, C_p -minimal positive approximants, Acta Sci. Math. (Szeged) 43 (1981), 109–115.

Department of Mathematics, Indiana University - Purdue University, Fort Wayne, Indiana 46805

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843