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A CANONICAL TRACE CLASS APPROXIMANT

D. A. LEGG AND J. D. WARD

Abstract. Let H be a finite-dimensional Hilbert space, B( H) the space of bounded

linear operators on H. and C a convex subset of B(H). If A is a fixed operator in

fl( H), then A has a unique best approximant from C in the Cp norm for 1 < p < x.

However, in the C¡ (trace) norm, A may have many best approximants from C. In

this paper, it is shown that the best C approximants to A converge to a select trace

class approximant Ax as p -» 1. Furthermore. A¡ is the unique trace class approxi-

mant minimizingE"_! S,(A — B)ln S¡(A — B) over all trace class approximants B.

The numbers S,(T) are the eigenvalues of the positive part \T\ of T.

1. Introduction. The question of approximating a finite-dimensional matrix by

operators from some prescribed convex set in the Cp norm, 1 < p < oo, has a simple

answer. Namely, there is always a unique approximant due to the convexity of the

class of approximating operators and the uniform rotundity of the C. norm.

However, in general a given matrix has a " large" set of approximants in the Cp norm

forp = 1 or oo.

The purpose of this paper is to show that the unique C approximants to a given

finite-dimensional matrix A from a prescribed convex set converge to a "select" Cx

approximant asp tends to 1. This result answers, in the affirmative, questions 3 and

4 in [8]. In addition, the fact that the limit exists as p —> 1 establishes a canonical

trace class approximant. Very often canonical approximants shed much light on the

structure of the set of best approximants as seen in [2, 3 and 4].

2. A canonical trace class approximant. In what follows, the term operator shall

refer to a bounded linear operator on a complex Hilbert space 77 of dimension

n < oo. The numbers SX(A),.. .,Sn(A) will denote the eigenvalues of \A\ listed in

decreasing order, where A is a bounded linear operator on 77 having polar factoriza-

tion A = U\A\. For 1 < p < oo, the C norm is defined by

\\A\\p=lÍsi(A)P
\ ¿-I

For a given matrix A, let A'p denote a unique nearest point in the C norm from a

closed convex set C and let Ap = A - A'p. We establish that lim^j Ap (and hence

lim     XA') exists in the trace norm.
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Motivated by the approach in [7] we let, for a fixed A,

4,(A,p)=\\A\\Pp= ÍS,(A)P-

Then

d4>

1 = 1

and so

dp

d$

dp

(A,p)= ZsXAYlnS^A),
i=i

(A,X)= Y.S,(A)lnSi(A),
i = l

where In denotes the natural log.

Lemma 2.1. If B is any cluster point of {Ap) in the trace norm as p —> 1, then

A — B is a best Cx approximant to A from C, and

n n

£ 5,(5) In 5,(5) = min   £ S,(D) In 5,(7)),
, = i DeS , = i

where S> = {A — D': D' is a best Cx approximant to A from C}.

Proof. Let pk -» 1 with Apk -* 5 in the trace norm. Clearly A — 5 is a best C,

approximant. Let ®(x) = xln x for x > 0 with $(0) = 0. Let fl,e§ satisfy

Í*(S,(DX))= min   ¿0(5,(7))).
, = i D^ ¡«i

It is easily checked that $(x) =s (xp - x)/(p - X) for x > 0, p > 1, and so, for

each i = 1,... ,n, we have

i Pi

HSi(Aj)
S,(Aptr - S,(AJ

Hence

ÍWJ--+X

/>*-!

Pk-l

LS,(Apkr-I,S,(Aj

LS,{Dxy- ZS,(DX)
;=1 ;=1

Pk
^T[<í>(7)1,pA)-<í,(7)1,l)].

Letting k -* oo, we obtain

£*($(*)) ^IX^aA)).
; = 1 / = !

Hence

I $(5,(5)) = min   ^(^(í)).
;_1 fl£â    ,_,
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Theorem 2.2 Let C be a closed convex set of n X n matrices and let A be the

matrix in C with smallest Cp norm. Then \im     XA  exists.

Proof. Since the underlying Hilbert space is finite dimensional, every sequence

{A }, pk -* 1, contains a convergent subsequence in the trace norm. Hence it

suffices to show that {Ap} has a unique cluster point as p -» 1.

Suppose Bx and 52 are cluster points of {A ) as p -» 1. If we multiply Bx and 52

by a sufficiently large positive scaling factor, we may assume that all the numbers

S{(Bx/2),       5,(52/2),        S,^2(BX + B2)),

i = 1,...,n, are either 0 or greater than 2.

Let f(x) be a strictly increasing convex function such that /(0) = 0 and f(x) =

$(x) for x > 2. By [5, Chapter 2, Theorem 4.1], we have

£ *>(s,(f (5, + 52))) = tf(s,(\(Bx + 52)))

(D <Ê/U(£) + $'*> 2 j       '2/ = 1

(2) <I
/ = !

1/(5,(5,))+|/(5,(52))

-\ LHSiW) + 1 I *(5,(52))./ = i /=i
Hence by Lemma 2.1, since 5j and 52 are the cluster points of {Ap} asp -* X, we

have

Í9(sÁUBx + B2)))^min ¿$(5,(73)).

Since K5i + 52) g /^, it follows that

¿ $(5,(^(5,+ 52)))=nhn ¿$(5,(7))).

Hence both inequality signs in (1) and (2) must actually be equal signs.

The inequality (1) implies that

Si(\(Bx + B2)) = S,(Bx/2) + S,(B2/2)

for each i = X,...,n since/is strictly convex, while (2) implies that 5,(5,) = 5,(52)

= S,((BX + B2)/2) for all /; i.e., \\Bx\\p = ||£2||„ = H^ + B2)/2\\p. From the strict

convexity of the Cp norm, it follows that Bx = 52. Hence there exists a unique

cluster point of {A } as p -* 1 and this completes the proof.

Remark. A similar result seems likely in the case p = oo if the approximating

class is the set of positive operators. We conjecture that the best Cp approximants

converge in the operator norm to the approximant Pm as p -* oo. See [8].
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