ON THE COMBINATORIAL PROPERTIES OF BLACKWELL SPACES

JAKUB JASIŃSKI

ABSTRACT. Under MA $+ \neg$ CH (Martin's Axiom and negation of the Continuum Hypothesis) we prove that the intersection of a Blackwell space with the analytic set and the Cartesian product of a Blackwell space and a Borel set do not need to be Blackwell spaces.

1. Introduction. In this paper we present a few examples illustrating the singular behaviour of Blackwell spaces. They shall provide (under MA $+ \neg$ CH) the negative answers to questions P4, P6, P7 and P8 raised by K. P. S. Bhaskara Rao and B. V. Rao in [1]. The first two were originally answered by W. Bzyl and J. Jasiński in [4]. Here we give a slight generalization of their result (Proposition 1).

On the other hand, W. Bzyl in [3], using the idea presented in [9], proved that questions P4, P6, P7 and a weaker version of P8 have positive answers when restricted to Blackwell spaces with totaly imperfect complement in some analytic set.

Let us recall the main definitions. For a metric space X by $\Sigma_{\alpha}X$, we denote the additive Baire classes of Borel subsets of X, and by $\mathscr{B}(X)$ we denote a σ -algebra of all Borel subsets of X. A Borel measurable mapping $f: X \to Y$, where Y is a metric space, is called a class Σ_{α} if, for all open subsets $U \subset Y$, $f^{-1}(U) \in \Sigma_{\alpha}(X)$.

A σ -algebra of subsets of X is called separable if it is countably generated (c.g.) and separates the points of X. Let X be a separable metric space. X is called a Blackwell space if $\mathscr{B}(X)$ does not contain a proper separable sub- σ -algebra. X is called a strongly Blackwell space if any two c.g. sub- σ -algebras of $\mathscr{B}(X)$ with the same atoms coincide. It is clear that a strongly Blackwell space is a Blackwell space. If A is an analytic subset of a Polish space, then A is strongly Blackwell. For this and for other results on Blackwell spaces see K. P. S. Bhaskara Rao and B. V. Rao [1].

2. Basic lemmas. We shall often refer to the well-known result of Silver:

LEMMA. 1. (MA) If Z is a separable metric space and $|Z| < 2^{\omega}$, then $\mathscr{B}(Z) = \mathscr{P}(Z)$.

For the proof see [8, pp. 162, 163]. As pointed out by K. P. S. Bhaskara Rao and B. V. Rao [1, p. 15], Lemma 1 implies the following

LEMMA 2. (MA) If Z is a separable metric space with $|Z| < 2^{\circ}$, then Z is strongly Blackwell.

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Received by the editors April 25, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28A05; Secondary 04A15.

Key words and phrases. Blackwell spaces, Borel sets, analytic sets.

LEMMA 3. If Y is a Blackwell space and B is a Borel subset of the Polish space, then $Y \cup B$ is a Blackwell space.

For the proof see $[1, p. 28, 2^0]$.

3. Main propositions. In this section, X will denote a Polish space.

PROPOSITION 1. (MA) Let $B \in \mathscr{B}(X)$ be of cardinality 2^{ω} and let Z be an uncountable separable metric space of cardinality less than 2^{ω} . If $Z \cap B = \emptyset$, then $Z \cup B$ is a Blackwell space which is not strongly Blackwell.

PROOF. By Lemma 2, Z is a Blackwell space, so, by Lemma 3, $B \cup Z$ is also a Blackwell space.

W. Bzyl and J. Jasiński in [4] proved that there exists a Borel set $B_1 \in \mathscr{B}(\mathbb{R}^2)$ and $Z_1 \subseteq \mathbb{R}$ with $|Z_1| = \omega_1$ such that $B_1 \cup Z_1$ is not a strongly Blackwell space. Let $f: B \to B_1$ be a Borel isomorphism (see [6, p. 450, Theorem 2]) and let

$$g: Z \xrightarrow[onto]{} Z_1$$

By Lemma 1 a mapping $h: B \cup Z \rightarrow B_1 \cup Z_1$, defined by

$$h(x) = \begin{cases} f(x) & \text{for } x \in B, \\ g(x) & \text{for } x \in Z, \end{cases}$$

is Borel measurable; hence, $B \cup Z$ is not strongly Blackwell.

A certain part of the next proposition does not require MA so we formulate it separately as

LEMMA 4. Let $Y \subseteq X$ be a Blackwell (strongly Blackwell) space and let $Z \subseteq X \setminus Y$. If, for every Borel set $B \in \mathscr{B}(X)$, $B \cap Y = \emptyset$ implies $|B \cap Z| \leq \omega$, then $Y \cup Z$ is a Blackwell (strongly Blackwell) space.¹

PROOF. We give a proof in case Y is a strongly Blackwell space. Let $\mathscr{C} \subseteq \mathscr{D} \subseteq \mathscr{B}(Y \cup Z)$ be c.g. σ -algebras with the same atoms and let $D \in \mathscr{D}$. By [1, p. 23, Proposition 8(5)] it suffices to show that $D \in \mathscr{C}$. Since Y is strongly Blackwell, $\mathscr{C} \upharpoonright_Y = \mathscr{D} \upharpoonright_Y$, so there is a set $C \in \mathscr{C}$ such that

$$(1) C \cap Y = D \cap Y.$$

Let $C', D' \in \mathscr{B}(X)$ be such that $C' \cap (Y \cup Z) = C$ and $D' \cap (Y \cup Z) = D$. By (1) the symmetric difference $D' \triangle C' \subseteq X \setminus Y$; hence, $|(D' \triangle C') \cap Z| \leq \omega$ and $|D \triangle C| \leq \omega$, so $D = C \triangle (C \triangle D) \in \mathscr{C}$.

Recall that whenever $A \subseteq X$ is an analytic non-Borel set, then there exist nonempty Borel sets C_{α} , $\alpha < \omega_1$, such that each Borel set $B \in \mathscr{B}(X)$ disjoint with A is covered by countably many C_{α} 's. The sets C_{α} are called the constituents of a coanalytic set $X \setminus A$ (see [6, p. 499]).

Disjoint sets $X_1, X_2 \subseteq X$ are called Borel-separable if there is a Borel set $B \in \mathscr{B}(X)$ such that $X_1 \subseteq B$ and $X_2 \subseteq X \setminus B$.

¹This lemma has been obtained independently by R. M. Shorttnnn and K. P. S. Bhaskara Rao.

PROPOSITION 2. (MA) Let $A \subseteq X$ be an analytic non-Borel set and let $\{C_{\alpha}\}_{\alpha < \omega_1}$ be the constituents of $X \setminus A$. Whenever $Z \subseteq X$, $\omega < |Z| < 2^{\omega}$ and $A \cap Z = \emptyset$, then $A \cup Z$ is not a Blackwell space iff there is an $\alpha_0 < \omega_1$ such that $|C_{\alpha_0} \cap Z| > \omega$ and $|\{\alpha: C_{\alpha} \setminus Z \neq \emptyset\}| = \omega_1$.

PROOF. "If" part. Let $Z_1 \subseteq Z \cap C_{\alpha_0}$ be of cardinality ω_1 . Since

$$\left|\left\{\alpha < \omega_1 \colon C_{\alpha} \setminus Z \neq \emptyset\right\}\right| = \omega_1,$$

there is a mapping $g: Z_1 \xrightarrow{1-1} X \setminus (A \cup Z)$ such that $g(Z_1)$ and A are disjoint non-Borel-separable.

Define $f: A \cup Z \xrightarrow{1-1} X$,

$$f(x) = \begin{cases} x & \text{for } x \in (A \cup Z) \setminus Z_1, \\ g(x) & \text{for } x \in Z_1. \end{cases}$$

By Lemma 1, f is Borel measurable, but $f(Z_1) = g(Z_1) \notin \mathscr{B}(f(A \cup Z))$, so $A \cup Z$ is not a Blackwell space (see [1 p. 22, Proposition 7(2)]).

"Only if" part. Suppose $|\{\alpha: C_{\alpha} \setminus Z \neq \emptyset\}| < \omega_1$. In this case there is an $\alpha < \omega_1$ such that $Z \cup A = Z \cup (\bigcup_{\beta > \alpha} C_{\beta}) \cup A$ is Borel, so, by Lemmas 2 and 3, $A \cup Z$ is a Blackwell space.

In case, for every $\alpha < \omega_1$, $|C_{\alpha} \cap Z| < \omega_1$, then, for every Borel set $B \in \mathscr{B}(X)$, $B \cap A = \emptyset$ implies $|B \cap Z| \le \omega$, so, by Lemma 4, $Z \cup A$ is a Blackwell space.

COROLLARY 1. (MA) Let A and Z be as in Proposition 2. If A and Z are Borel separable, then $A \cup Z$ is not a Blackwell space.

COROLLARY 2. $(MA + \neg CH)$ There exists a Blackwell space Y and an analytic set $A \subset X$ such that $Y \cap A$ is not a Blackwell space.

PROOF. Let $Y = B \cup Z$ where $B \in \mathscr{B}(X)$, $|B| = 2^{\omega}$, $Z \subset X$, $\omega < |Z| < 2^{\omega}$ and $B \cap Z = \emptyset$. By Lemmas 2 and 3, Y is a Blackwell space. Let $A_1 \subset B$ be an analytic non-Borel set and take $A = A_1 \cup (X \setminus B)$. $A \cap Y = A_1 \cup Z$ which is not Blackwell by Corollary 1.

PROPOSITION 3. (*MA*) If $Z \subset X$ and $\omega < |Z| < 2^{\omega}$, then $Z \times B$ is not a Blackwell space, where B is an uncountable Borel subset of some Polish space.

We shall precede the proof with two lemmas. The first one follows by Lemma 1 from [2, Theorem 3].

LEMMA 5. (MA) Let \mathcal{N} be a set of irrational numbers. If $Z \subseteq \mathcal{N}$ with $|Z| < 2^{\omega}$, then $B \in \mathcal{B}(Z \times \mathcal{N})$ iff there is an $\alpha < \omega_1$ such that for every $z \in Z$ the section $B_z = \{y: (z, y) \in B\} \in \Sigma_{\alpha}(\mathcal{N})$.

Lemma 5 implies the following

LEMMA 6. (MA) Let Z and B be as in Proposition 3. A mapping h: $Z \times B \to Y$, where Y is a separable metric space, is Borel measurable iff there is an $\alpha < \omega_1$ such that for every $z \in Z$ a restricted mapping $h \upharpoonright \{z\} \times B$ is of class Σ_{α} . PROOF. Apply the isomorphism theorem [6, p. 450, Corollary 1c].

PROOF OF PROPOSITION 3. By the well-known theorem of Hausdorff [5], \mathcal{N} can be decomposed into ω_1 disjoint uncountable sets of class $\Sigma_3(\mathcal{N}), \mathcal{N} = \bigcup_{\alpha < \omega_1} E_{\alpha}$.

Let $Z_1 \subset Z$ be of cardinality ω_1 . By Lemma 1, $Z_1 \times B \in \mathscr{B}(Z \times B)$, so it suffices to prove that $Z_1 \times B$ is not a Blackwell space (see [1, p. 28, 1⁰]). Let $Z_1 = \{z_{\alpha} : \alpha < \omega_1\}$. There is a $\gamma < \omega_1$ such that for each $\alpha < \omega_1$ there is a Borel measurable function $f_{\alpha}: B \xrightarrow{1-1} E_{\alpha}$ of class Σ_{γ} (see [6, p. 450, Theorem 2]). By Lemma 6, a mapping $h: Z_1 \times \mathcal{N} \to \mathcal{N}$ defined by $h(z_{\alpha}, x) = f_{\alpha}(x)$ is Borel measurable, but the inverse mapping is not, since $Z_1 \times B$ is not Borel [6, p. 489, Theorem 1]. Hence, by [1, p. 22, Proposition 7 (2)], $Z_1 \times B$ is not a Blackwell space.

References

1. K. P. S. Bhaskara Rao and B.V. Rao, *Borel spaces*, Dissertationes Math. (Rozprawy Mat.) 190 (1981), 1-63.

2. R. H. Bing, W. W. Bledsoe and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36.

3. W. Bzyl, On the analytic dense sets, preprint, 1984.

4. W. Bzyl and J. Jasiński, A note on Blackwell spaces, Bull. Acad. Polon. Sci. 31 (1983), 215-217.

5. F. Hausdorff, Summen von S₁ Mengen, Fund. Math. 26 (1936), 248.

6. K. Kuratowski, Topology I, Academic Press, New York; PWN, Warsaw, 1966.

7. E. Marczewski, Characteristic function of the sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-223.

8. D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.

9. R. M. Shortt, Borel dense Blackwell spaces are strongly Blackwell, preprint, 1982.

Institute of Mathematics, University of Gdansk, UL. Wita Stwosza 57, 80–952 Gdansk, Poland