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LINEAR MAPS DO NOT PRESERVE

COUNTABLE-DIMENSIONALITY

MLADEN BESTVINA AND JERZY MOGILSKI

Abstract. Examples of linear maps between normed spaces are constructed, includ-

ing a one-to-one map from a countable-dimensional linear subspace of l2 onto /2.

We prove that the linear span of a countable-dimensional linearly independent

subset of a normed linear space is, in many cases, countable dimensional.

1. Introduction. In this note we shall prove that for a given separable Banach space

Y there exists a one-to-one, continuous linear surjection F: E -» Y, where £ is a

normed linear space, which is a countable union of zero-dimensional sets. The space

E will be obtained as the linear span of a carefully embedded zero-dimensional

metric space into a Banach space. If Y is a Hilbert space then E can be chosen to be

a linear subspace of the Hilbert space.

In the proof we use the well-known construction of an embedding of a metric

space onto a linearly independent subset of a Banach or Hilbert space briefly

described in §2. In §3 we will prove that the linear span of a carefully embedded

countable-dimensional, separable metric space is also countable dimensional. In §4

we will construct some examples of linear maps "raising" topological dimension.

2. The standard embedding into /^-spaces, 1 < p ^ oo. Recall that for a set S we

can define normed spaces I (S), X < p < oo. For 1 < p < oo, lp(S) consists of

functions z: 5 -» R such that Ls(=s\z(s)\p < oo with usual addition and scalar

multiplication. The p-norm of z g lp(S) is \\z\\p = (T.ssS\z(s)\p)1/p.

The space lx(S) consists of all bounded functions z: S -» R. The oo-norm of

z e L(S)is\\z\\x = supseS|z(s)|.

Let A be a metric space with metric d bounded by 1. In this section we briefly

describe an embedding h: X -» lp(S), X < p < oo, with certain nice properties.

First consider the case 1 < p < oo. The construction for p = 2 can be found in

[BP, p. 193].
For n = 1,2,... fix a locally finite partition of unity {<J>},,, e A „ sucn mat d( x, y) >

1/2" implies <f>(x) ■ <j>(y) = 0 for all «/> g A„. Then for x g X define x: A -> R,
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where A = U~=1A„, by x(<b) = [1/2" • d,(x)]l/p, for cf> g A„. Then

xg/^A)    and    M\p=[Î U   I  *(*)))   ' = 1.
\ n = l L    WeA„ ' /

2.1. Proposition. The function h: X -» /p(A) gwe« ¿vy h(x) = x has the following

properties.

(X) h is an embedding,

(2) h(X) is a linearly independent subset, and

(3) for every x g A, and every closed subset F ç A w/z/z x £ 5, //ze/r ex/sis a

continuous linear functional \p: ¡P(A) -* Rsuch that\p(h(F)) = {0} and\p(h(x)) =£ 0.

For the proof of (1) and (2) (for the case p = 2), see [BP, p. 193], Property (3) is

built into the construction, since we can use the "projection onto a ^-coordinate",

i.e. the functional \p(z) = z(tf>) for appropriately chosen tf> g A„. (Pick n > 1 such

that 1/2" < c/(x, F), and find d. g A„ such that <¡>(x) * 0.)

Note that if A is a separable metric space, we can arrange that A is countable.

The construction for p = oo can also be found in [BP, p. 49], Define the space

Y = AU {y0}, with the metric d that extends d and has the property that d(x, y0)

= X for x g X. Let A = {a: Y -» R; a(y0) = 0, \a(yx) - a(y2)\ < d(yx, y2) for all

yx, y2 g Y}. Finally, defineh: X -» /^(^l) by A(x) = x, wherex(a) = a(x).

2.2 Proposition. The map h is an isometry, h(X) is a linearly independent subset of

l„o(A)> and

(4) for every x G A and every closed subset 5 ç A with x £ F there exists a

continuous linear functional $: lx(A) -* R such that \p(h(F)) = {0} and\p(h(x)) =£ 0.

Again, (4) can be proved using the appropriate projection. If we set a(y) =

d(y, F U {y0}), then the functional i//: lx(A) -» R defined by yp(z) = z(a), has the

desired property. The rest is proved in [BP].

3. Countable-dimensional linear spaces. We can construct many interesting normed

spaces by taking span h(X) where h: X -* £ is an embedding of a metric space into

a normed space such that h(X) is a linearly independent subset (e.g. we can use the

construction described in §2). The question we want to address in this section is:

When is span h (A) countable dimensional? (A separable metric space Z is counta-

ble dimensional if it can be represented as a countable union of zero-dimensional

subsets.) The obvious necessary condition is that A must be countable dimensional.

3.1. Example. Choose a Hamel basis X of l2 = /2(N), and let /: C -» A be a

one-to-one surjective map from a zero-dimensional separable metric space C.

Assuming that C Q [\, 1], we set

rJLÉÚ..x,xex\
\  1Mb /

Then X' is also a Hamel basis for l2, and x' •-» ||x'||2 defines a homeomorphism

X' ~ C. Therefore dim X' = 0 and span X' = l2 (which is not countable dimen-

sional).
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It is known (cf. [BP, p. 282]) that if A is a countable union of finite-dimensional

compacta, then span h(X) is countable dimensional (for every embedding h: X -» E

such that h(X) is a linearly independent subset of E). We prove in this section that

if h is a "nice" embedding, then span h(X) is countable dimensional, provided A is

countable dimensional. The standard embeddings described in §2 possess this nice

property.

3.2. Theorem. Let h: X -» E be an embedding of a countable dimensional separable

metric space X into a linear metric space E such that h(X) is a linearly independent

subset of E. Suppose that h(X) satisfies the following property.

For every x G A and every closed subset F Q X with x <£. F

(*) there exists a continuous linear functional \p: E -» R such that

4>(h(F)) = {0} but ̂ (h(x)) * 0.

Then span h( X) ç Eis countable dimensional.

Proof. To an ordered collection (A; iv.. .,is) of positive integers with ix < ■ ■ •

< is we assign the collection T(N; ix,... ,is) = {(tx,.. .,tm) g Rm; -TV < fx = • • ■

= th, th + 1/7V < f,i+1 - • • •  = t,2, t¡2 + 1/7V < t¡i+1-= V- ■»**._, + l/N

< tit i + 1 = • • • = f, = ?„, < A, \t,\ > 1/A for all i). Denote by X(N; ix,...,is) the

collection of points z in span h(X) that can be represented as z = txh(xx) + • • • +

tmh(xm) for some (tx,...,tm) g T(N; ix,...,is), and some (*!,..., jcm-) g Xm with

x, =£ Xj for i #/. Note that span h(X) - {0} can be represented as the countable

union of such subsets (for different choices of (A; ix,...,is)). Consequently, it

suffices to prove that X(N; ix,... ,is) is countable dimensional.

Define a map x: {(*i>- • -,xm) g Xm: x, + Xj for i ¥=j] X T(N; ix,...,is)->

X(N;ix,...,is)by

x(xx,...,xm,tx,...,tm) = txh(xx) + -•■ + tmh(xm).

Noting that the domain of x is countable dimensional (since it is contained in

[-N, N]m X Xm), the rest of the proof follows from the next two lemmas.

3.3. Lemma, x is a closedix\(i2 — ix)\ ■ ■ ■ (is — ís_1)!-ío-1 surjection.

3.4. Lemma. If f: X -* Y is a closed q-to-X map between separable metric spaces

(q > 1), and if X is countable dimensional, then Y is countable dimensional.

Proof of Lemma 3.3. From the uniqueness of the representation of z g

span h(X) - {0} as a linear combination of elements in h(X) (up to a permutation),

it follows that x is a ix\(i2 - ix)\ • • • (is - z'^^l-to-l surjection. To show that x is

closed, it suffices to prove that if (zk)f=x is a sequence in the domain of x, and if

x(zk) ~* x(z) f°r some z in the domain of x> then (zk)kc=x has a convergent

subsequence. To set the notation, let zk = (xx,. . . ,xkm, tx,. . . ,tk), z =

(xx,... ,xm, ix,.. -,tm). Passing to a subsequence, we may assume that

(5)f*-* t?,i= l,...,w,and

(6) (xf)k°=x either converges, or does not have a convergent subsequence, i =

1,... ,m.
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For /' = 1,... ,m let ß,. = {j: Xj -» x,}. By (*) we can choose a linear functional

\p: E —> R such that

(7)t//(/I(x,))#0,

(8) 4>(h(Xj)) = 0, for y # í, and

(9) ^(rzix^)) = 0, for ally <£ ß, and all but finitely many values of k.

Passing to the limit of the left-hand side in ipx(zk) -* 4>x(z)it follows that

(10) E ry° = r,
yen,

Since i, # 0, we must have ß, =£ <b (i = X,...,m). Moreover, since ß1,...,ßm are

pairwise disjoint subsets of {l,...,w}, it follows that card ß, = 1, i = l,...,m, and

hence Q, U  • • • U fim = {1,.. .,m). In particular, (zk)f=x converges.

Proof of Lemma 3.4. For p - 1,2,... denote Y = {_y g Y: î/(x, x') > 1/p for

all x, x' &\f-\y) with x # x'}. Since Y = Yx U Y2 U • • • it suffices to show that

Yp is countable dimensional for each p. We will prove that f\f~1(Y): f~l(Y) -* Y

is a local homeomorphism (and hence, by separability, Y can be covered by

countably many open sets, each of which embeds into /_1(Y ) ç A). For x g f~l(Y )

consider

_ /|: Nx/3p(x) Uf-l{Yp)-*f(Nx/3p(x)) n Yp

(nx/3 (x) is the closed l/3p-ball about x). Clearly, this a closed one-to-one

surjection. To finish the argument, observe that f{Nx/Jp(x)) n Y contains a

neighborhood of f(x) in Y . (If i7 g Yp is close enough to f(x), then f'x(y) is

contained in l/3p-neighborhood of /_1/(x). Since >> g F, no pair of points of

f~1(y) can be contained in l/3p-neighborhood of some x' g/_1/(x). Using that

card f'l(y) = card f~lf(x), it follows that/_1(^) intersects A1/3/,(x).)

4. Examples of linear maps raising topological dimension. We will need the

following observation concerning linear extension of continuous maps.

4.1 Lemma. Let X be a Hamel basis in a normed linear space (E, | \x) and let F:

E -* Y be a linear map of E into a Banach space (Y, \\2) given by

F\ £ tjX¡    = E ',-/( x¡ ),     where x, G X, tj is a real number for i = X,...,«,

\/=i       /      /-i

andf: X -> Y is a continuous map.

Let 11 be a new norm on E defined by |x| = (Ix^2 + \F(x)\\)l/2. Then:

(i) the map F: (E, \ |) -» (Y, \ \2) is continuous,

(ii) // the Hamel basis X satisfies the condition (*) of 3.2 with respect to the norm \\x,

then Xsatisfies (*) with respect to \ |,

(iii) the norm \ \ induces the same topology on X.

Let us observe that F may not be continuous as a map of (A, 11,) into (Y, \\2). For

instance, let E = span A, where A = {(x,) g l2: x, = t', ie [§, f ]}. Let / be a

continuous real-valued function on X such that/_1(0) = {(?') g A: t g [%, \]} and

/_1(1) = ((I)')- The set A is a Hamel basis for E and span/_1(0) is dense in E (cf.

[BP, p. 267]). Hence the linear extension F of fis not continuous because F(x) = 0

for x g span f~l(0) and F(((|)')) = 1-
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Let us recall that a linear subspace of the Hilbert space is called a pre-Hilbert

space.

4.2. Example. There exists a continuous one-to-one linear surjection A: E -* l2 of

a countable-dimensional pre-Hilbert space E onto l2.

Proof. Let A be the zero-dimensional Hamel basis of the Hilbert space l2

constructed in §3, and let h: X -> l2 be an embedding of A onto linearly indepen-

dent subset of l2 described in §2. Let us consider the linear space E = span h(X)

with the norm given by \y\ = (||.y||2 + ||£(v*)|l2)1/2 f°rJ e T., where F: E -* i2 is the

linear extension of the map h~x: h(X) -> A. (Note that the norm 11 is induced by an

inner product x * y = x ■ y + F(x) ■ F(y) for x, y g E. Thus the linear completion

of E is isomorphic to l2, and hence £ is a pre-Hilbert space.)

By Lemma 4.1 and Theorem 3.2, (£, | |) is a countable-dimensional pre-Hilbert

space, and the linear map £: (£, | |) -» (l2, \\ \\2) is a continuous, one-to-one

surjection.

Repeating the above construction we obtain

4.3. Example. Let Y be a separable Banach space. There exists a continuous,

one-to-one linear surjection £: £ -> Y of a countable-dimensional normed linear

space £ onto Y.

A metric space X is a-finite-dimensional-compact if A is a countable union of

finite-dimensional compacta. The next example answers a question posed in [MM],

4.4 Example. There exists a continuous linear surjection £ of a a-finite-dimen-

sional-compact pre-Hilbert space V onto the pre-Hilbert space £ ={(?,) g l2:

£Jli(if,)2 < °°} which contains the infinite-dimensional compact convex set Q =

{(/,) <s /2: ZT-xiih)2 < !}•
Proof. Let /: 7 -» Q be a continuous surjection of the interval 7 = [0,1] onto Q

and let h: I —» l2 be an embedding onto a linearly independent subset of l2 described

in §2. The linear extension F: span h(I) -» £ of the map fh~l: h(I) -> Q is a

continuous linear surjection of the a-finite-dimensional-compact pre-Hilbert space

V = (span h(I), | |) onto £, where |x| = (||jc||| + \\F(x)\\22)l/2 (see [BP, p. 282] for

the proof that span h(I) is a-finite-dimensional-compact).

4.5. Example (cf. [MM]). There exists an open linear surjection of a a-finite-

dimensional-compact pre-Hilbert space onto a pre-Hilbert space which is not

countable dimensional.

Proof. Let £: V -» £ be the map constructed in Example 4.4. Let Y = a/Ker £

be the quotient space. Then the quotient map T: V -* Y is open. The space Y cannot

be countable dimensional because it is a-compact and we can map Y onto £ by a

continuous, one-to-one map.

4.6. Remark. Each continuous linear map between metric linear spaces is a

i/K°°-map (a map/: X -* Y is a UVx-map if for every y g Y and every open set U

containing vs there exists an open set V, y g Ve U, such that/"'(F) is contractible

in/-1(í7)). By [H] the linear maps constructed in §4 are fine homotopy equivalences

(the map /: X -* Y is a fine homotopy equivalence if for every open cover U of Y

there exists a map g: Y -» A such that f ° g is t/-homotopic to idy and g° f is

/_1(c7)-homotopic to id^). Hence the Examples 4.2,4.3 show that even one-to-one

fine homotopy equivalences can raise dimension (cf. [A]).
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