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LINEAR MAPS DO NOT PRESERVE
COUNTABLE-DIMENSIONALITY

MLADEN BESTVINA AND JERZY MOGILSKI

ABSTRACT. Examples of linear maps between normed spaces are constructed, includ-
ing a one-to-one map from a countable-dimensional linear subspace of /, onto /,.
We prove that the linear span of a countable-dimensional linearly independent
subset of a normed linear space is, in many cases, countable dimensional.

1. Introduction. In this note we shall prove that for a given separable Banach space
Y there exists a one-to-one, continuous linear surjection F: E — Y, where F is a
normed linear space, which is a countable union of zero-dimensional sets. The space
E will be obtained as the linear span of a carefully embedded zero-dimensional
metric space into a Banach space. If Y is a Hilbert space then E can be chosen to be
a linear subspace of the Hilbert space.

In the proof we use the well-known construction of an embedding of a metric
space onto a linearly independent subset of a Banach or Hilbert space briefly
described in §2. In §3 we will prove that the linear span of a carefully embedded
countable-dimensional, separable metric space is also countable dimensional. In §4
we will construct some examples of linear maps “raising” topological dimension.

2. The standard embedding into / -spaces, 1 < p < co. Recall that for a set S we
can define normed spaces /,(S), 1 <p < . For 1 <p < o0, [,(S) consists of
functions z: § — R such that ¥ _¢|z(s)|” < oo with usual addition and scalar
multiplication. The p-norm of z € /,(S) is ||z]|, = (Z,<s]2(s)|?)"/7.

The space /_(S) consists of all bounded functions z: S — R. The co-norm of
2 € 1,(S)is|zll,, = sup,cslz(s)l

Let X be a metric space with metric d bounded by 1. In this section we briefly
describe an embedding h: X — [ ,(S), 1 < p < oo, with certain nice properties.

First consider the case 1 < p < oo. The construction for p = 2 can be found in
[BP, p. 193].

Forn = 1,2,... fix a locally finite partition of unity {¢},c, such thatd(x, y) >
1/2" implies ¢(x)-¢(y) =0 for all $ € A,. Then for x € X define x: A - R,
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where A = U%_ A, by %(¢) = [1/2" - ¢(x)]'/?, for € A,. Then

© ] 1/p
$el(A) and |(x||,,=(§ = = ¢(x))) -1

PEA,

2.1. PROPOSITION. The function h: X — [ (A) given by h(x) = X has the following
properties.

(1) h is an embedding,

(2) h(X) is a linearly independent subset, and

(3) for every x € X, and every closed subset F C X with x & F, there exists a
continuous linear functional : 1,(A) = R such that Y (h(F)) = {0} and ¢ (h(x)) # 0.

For the proof of (1) and (2) (for the case p = 2), see [BP, p. 193]. Property (3) is
built into the construction, since we can use the “projection onto a ¢-coordinate”,
i.e. the functional y(z) = z(¢) for appropriately chosen ¢ € A,. (Pick n > 1 such
that 1/2" < d(x, F), and find ¢ € A, such that ¢(x) # 0.)

Note that if X is a separable metric space, we can arrange that A is countable.

The construction for p = co can also be found in [BP, p. 49]. Define the space
Y = X U {y,}, with the metric d that extends d and has the property that d(x, y,)
=1forx€ X.Let A = {a: Y > R; a(yy) = 0, |a(y;) — a(»,)| < d(y,, ,) for all
Y1» ¥» € Y }. Finally, define h: X — [_(A) by h(x) = X, where X(a) = a(x).

2.2 PROPOSITION. The map h is an isometry, h( X) is a linearly independent subset of
[(A), and

(4) for every x € X and every closed subset F C X with x &€ F there exists a
continuous linear functional y: 1 _(A) — R such that Y (h(F)) = {0} and y(h(x)) # 0.

Again, (4) can be proved using the appropriate projection. If we set a(y) =
d(y, FU {y,)), then the functional y: /_(A4) — R defined by y(z) = z(a), has the
desired property. The rest is proved in [BP].

3. Countable-dimensional linear spaces. We can construct many interesting normed
spaces by taking span h( X) where h: X — E is an embedding of a metric space into
a normed space such that 2( X) is a linearly independent subset (e.g. we can use the
construction described in §2). The question we want to address in this section is:
When is span h( X) countable dimensional? (A separable metric space Z is counta-
ble dimensional if it can be represented as a countable union of zero-dimensional
subsets.) The obvious necessary condition is that X must be countable dimensional.

3.1. ExaMpPLE. Choose a Hamel basis X of /, = /,(N), and let f: C —> X be a
one-to-one surjective map from a zero-dimensional separable metric space C.
Assuming that C C [4,1], we set

x =L e x).

Il

Then X’ is also a Hamel basis for /,, and x’ — ||x’||, defines a homeomorphism
X’ = C. Therefore dim X’ = 0 and span X’ = /, (which is not countable dimen-
sional).
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It is known (cf. [BP, p. 282]) that if X is a countable union of finite-dimensional
compacta, then span 4 ( X) is countable dimensional (for every embedding »: X - E
such that #( X) is a linearly independent subset of E)). We prove in this section that
if h is a “nice” embedding, then span 4 ( X) is countable dimensional, provided X is
countable dimensional. The standard embeddings described in §2 possess this nice
property.

3.2. THEOREM. Let h: X — E be an embedding of a countable dimensional separable
metric space X into a linear metric space E such that h(X) is a linearly independent
subset of E. Suppose that h( X) satisfies the following property.

For every x € X and every closed subset F C X with x & F
(*) there exists a continuous linear functional : E — R such that

Y(h(F)) = {0} but y(h(x)) # 0.

Then span h(X) C E is countable dimensional.

PROOF. To an ordered collection (N; ij,...,i,) of positive integers with i; < - -
< i, we assign the collection T(N; iy,...,i;) = {(f,...,t,) ER™ -N<t; = ---

=t,1 + 1/N < Lig1= 0 =1, + 1/N < Lpg1 =" =t,....t; +1/N
<t = =1, =t,<N|y > 1/Nforalli}. Denote by X(N; iy,...,i,) the
collection of points z in span h( X) that can be represented as z = t;h(x;) + -+ +

t,h(x,) for some (¢,...,t,) € T(N; iy,...,i,), and some (x,,...,x,,) € X" with
x; # x; for i # j. Note that span 2(X) — {0} can be represented as the countable
union of such subsets (for different choices of (N; iy,...,i,),. Consequently, it
suffices to prove that X(N; i,...,i,) is countable dimensional.

Define a map x: {(x,...,x,) € X™ x,# x; for i #j} X T(N; i,...,i,) =
X(N; iy,...,i )by

X(X15ee s Xy tyseeasty) = tih(x)) + -+ ¢,,h(x,,).

Noting that the domain of x is countable dimensional (since it is contained in
[-N, N]™ X X™), the rest of the proof follows from the next two lemmas.

3.3. LEMMA. x is a closed i,!(i, — iy)! - - (i, — i,_1)!-to-1 surjection.

3.4. LEMMA. If f: X — Y is a closed g-to-1 map between separable metric spaces
(g = 1), and if X is countable dimensional, then Y is countable dimensional.

PROOF OF LEMMA 3.3. From the uniqueness of the representation of z €
span A(X) — {0} as a linear combination of elements in 4#( X) (up to a permutation),
it follows that x is a i;!(i, — i))! -+ - (i, — i,_,)!-to-1 surjection. To show that x is
closed, it suffices to prove that if (z,)%_; is a sequence in the domain of x, and if
x(z,) = x(z) for some z in the domain of x, then (z,)¥., has a convergent
subsequence. To set the notation, let z, = (xf,...,xk tf,... 1K), z =
(X15-esXps ts- -5 t,,). Passing to a subsequence, we may assume that

)tk -1 i=1,...,m, and

(6) (xF)®_, either converges, or does not have a convergent subsequence, i =
1,...,m.
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Fori=1,....mletQ,= {: xj’.‘ — x;}. By (*) we can choose a linear functional
Yy: E — R such that

() (h(x,) # 0,

&) ¥ (h(x,)) = 0, forj + i, and

9) \p(h(xj’? )) = 0, for all j & &, and all but finitely many values of ..
Passing to the limit of the left-hand side in Y x(z,) — ¥ x(2) it follows that

(10) Yl =1.
JER,
Since ¢; # 0, we must have Q, # ¢ (i = 1,...,m). Moreover, since Q,,...,Q, are
pairwise disjoint subsets of {1,...,m}, it follows that card @, = 1,i = 1,...,m, and
hence @, U --- U Q, = {1,...,m}. In particular, (z,)¥_, converges.
PROOF OF LEMMA 3.4. For p = 1,2,... denote ¥, = { y € Y: d(x, x") > 1/p for
all x, x” € f~!(y) with x # x’}. Since Y = Y, U Y, U --- it suffices to show that

Y, is countable dimensional for each p. We will prove that f|f “}(Y,): f(Y,) = Y,
is a local homeomorphism (and hence, by separability, Y, can be covered by
countably many open sets, each of which embeds into f ‘l(Yp) C X).Forx € f7} Y)
consider

fl: Nyjys,(x) Uf-l(Yp) _’f(Nl/3p(x)) ny,
(N, ,3,(x) is the closed 1/3p-ball about x). Clearly, this a closed one-to-one
surjection. To finish the argument, observe that f( N, /3p(x)) N Y, contains a
neighborhood of f(x) in Y,. (If y € Y, is close enough to f(x), then f y) is
contained in 1/3p-neighborhood of f~'f(x). Since y € Y,, no pair of points of
7Y ») can be contained in 1/3p-neighborhood of some x’ € f 'f(x). Using that
card f"!(y) = card f~'f(x), it follows that f ~'( y) intersects N, ,3,(x).)

4. Examples of linear maps raising topological dimension. We will need the
following observation concerning linear extension of continuous maps.

4.1 LEMMA. Let X be a Hamel basis in a normed linear space (E, | |,) and let F:
E — Y be a linear map of E into a Banach space (Y, ||,) given by

n n
F( Y t,x,) =Y t,f(x,), wherex, € X, t,is areal number fori =1,....,n,
i=1 i=1

and f: X = Y is a continuous map.

Let || be a new norm on E defined by |x| = (|x|? + |F(x)|3)/%. Then:

(1) the map F: (E, ||) — (Y, ||,) is continuous,

(ii) if the Hamel basis X satisfies the condition (*) of 3.2 with respect to the norm ||,,
then X satisfies (*) with respect to ||,

(ii1) the norm || induces the same topology on X.

Let us observe that F may not be continuous as a map of (E, ||,) into (Y, ||,). For
instance, let E = span X, where X = {(x,) € /,; x,=1, t€[},3]}. Let f be a
continuous real-valued function on X such that f~}(0) = {(¢') € X: ¢t € [§, 3]} and
£711) = ((3)"). The set X is a Hamel basis for E and span f ~*(0) is dense in E (cf.
[BP, p. 267]). Hence the linear extension F of f is not continuous because F(x) =0

for x € span f}(0) and F(((3)")) = 1.
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Let us recall that a linear subspace of the Hilbert space is called a pre-Hilbert
space.

4.2. ExaMpLE. There exists a continuous one-to-one linear surjection F: E — [, of
a countable-dimensional pre-Hilbert space E onto /,.

PROOF. Let X be the zero-dimensional Hamel basis of the Hilbert space /,
constructed in §3, and let A: X — /, be an embedding of X onto linearly indepen-
dent subset of /, described in §2. Let us consider the linear space E = span h( X)
with the norm given by |y| = (||y||3 + || F(»)||3)"/* fory € E, where F: E — [, is the
linear extension of the map #~': h(X) — X. (Note that the norm || is induced by an
inner product x * y = x - y + F(x) - F(y) for x, y € E. Thus the linear completion
of E is isomorphic to /,, and hence E is a pre-Hilbert space.)

By Lemma 4.1 and Theorem 3.2, (E, ||) is a countable-dimensional pre-Hilbert
space, and the linear map F: (E,| |) = (/5, ]| ||;) i1s a continuous, one-to-one
surjection.

Repeating the above construction we obtain

4.3. EXAMPLE. Let Y be a separable Banach space. There exists a continuous,
one-to-one linear surjection F: E — Y of a countable-dimensional normed linear
space E onto Y.

A metric space X is o-finite-dimensional-compact if X is a countable union of
finite-dimensional compacta. The next example answers a question posed in [MM].

4.4 ExaMPLE. There exists a continuous linear surjection F of a o-finite-dimen-
sional-compact pre-Hilbert space ¥ onto the pre-Hilbert space ¥ = {(z;) € /,:
Y® ,(it;)* < oo} which contains the infinite-dimensional compact convex set Q =
(1)) € L T2 (i) < 1).

PROOF. Let f: I — Q be a continuous surjection of the interval I = [0,1] onto Q
and let h: I — [, be an embedding onto a linearly independent subset of /, described
in §2. The linear extension F: span h(I) — ¥ of the map fh~': h(I)—> Q is a
continuous linear surjection of the o-finite-dimensional-compact pre-Hilbert space
V = (span h(I), | |) onto ¥, where |x| = (||x||3 + || F(x)||3)"/? (see [BP, p. 282] for
the proof that span (/) is o-finite-dimensional-compact).

4.5. EXAMPLE (CF. [MM)]). There exists an open linear surjection of a o-finite-
dimensional-compact pre-Hilbert space onto a pre-Hilbert space which is not
countable dimensional.

PROOF. Let F: V' — ¥ be the map constructed in Example 4.4. Let Y = o/Ker F
be the quotient space. Then the quotient map 7: V' — Y is open. The space Y cannot
be countable dimensional because it is o-compact and we can map Y onto X by a
continuous, one-to-one map.

4.6. REMARK. Each continuous linear map between metric linear spaces is a
UV>-map (amap f: X - Yis a UV -map if for every y € Y and every open set U
containing y, there exists an open set ¥,y € V C U, such that f “}(V) is contractible
in £ "Y(U)). By [H] the linear maps constructed in §4 are fine homotopy equivalences
(the map f: X — Y is a fine homotopy equivalence if for every open cover U of Y
there exists a map g: Y — X such that fo g is U-homotopic to id, and go f is
/YU )-homotopic to id ). Hence the Examples 4.2,4.3 show that even one-to-one
fine homotopy equivalences can raise dimension (cf. [A]).
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