LINEAR MAPS DO NOT PRESERVE COUNTABLE-DIMENSIONALITY

MLADEN BESTVINA AND JERZY MOGILSKI

ABSTRACT. Examples of linear maps between normed spaces are constructed, including a one-to-one map from a countable-dimensional linear subspace of l_2 onto l_2 . We prove that the linear span of a countable-dimensional linearly independent subset of a normed linear space is, in many cases, countable dimensional.

1. Introduction. In this note we shall prove that for a given separable Banach space Y there exists a one-to-one, continuous linear surjection $F: E \to Y$, where E is a normed linear space, which is a countable union of zero-dimensional sets. The space E will be obtained as the linear span of a carefully embedded zero-dimensional metric space into a Banach space. If Y is a Hilbert space then E can be chosen to be a linear subspace of the Hilbert space.

In the proof we use the well-known construction of an embedding of a metric space onto a linearly independent subset of a Banach or Hilbert space briefly described in §2. In §3 we will prove that the linear span of a carefully embedded countable-dimensional, separable metric space is also countable dimensional. In §4 we will construct some examples of linear maps "raising" topological dimension.

2. The standard embedding into l_p -spaces, $1 \le p \le \infty$. Recall that for a set S we can define normed spaces $l_p(S)$, $1 \le p \le \infty$. For $1 \le p < \infty$, $l_p(S)$ consists of functions $z : S \to \mathbf{R}$ such that $\sum_{s \in S} |z(s)|^p < \infty$ with usual addition and scalar multiplication. The p-norm of $z \in l_p(S)$ is $||z||_p = (\sum_{s \in S} |z(s)|^p)^{1/p}$.

The space $l_{\infty}(S)$ consists of all bounded functions $z: S \to \mathbf{R}$. The ∞ -norm of $z \in l_{\infty}(S)$ is $||z||_{\infty} = \sup_{s \in S} |z(s)|$.

Let X be a metric space with metric d bounded by 1. In this section we briefly describe an embedding $h: X \to l_p(S)$, $1 \le p \le \infty$, with certain nice properties.

First consider the case $1 \le p < \infty$. The construction for p = 2 can be found in [**BP**, p. 193].

For n = 1, 2, ... fix a locally finite partition of unity $\{\phi\}_{\phi \in \Lambda_n}$ such that $d(x, y) \ge 1/2^n$ implies $\phi(x) \cdot \phi(y) = 0$ for all $\phi \in \Lambda_n$. Then for $x \in X$ define $\hat{x} : \Lambda \to \mathbb{R}$,

Received by the editors April 10, 1984. Partially presented at a Special Session of the 810th meeting of the AMS at the University of Notre Dame, April 6-7, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46B99, 54F45; Secondary 54C25, 55P10.

Key words and phrases. Countable dimension, normed linear spaces, continuous linear maps, Hamel basis, linear span, embeddings onto linearly independent sets.

where $\Lambda = \bigcup_{n=1}^{\infty} \Lambda_n$, by $\hat{x}(\phi) = [1/2^n \cdot \phi(x)]^{1/p}$, for $\phi \in \Lambda_n$. Then

$$\hat{x} \in l_p(\Lambda)$$
 and $\|\hat{x}\|_p = \left(\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\sum_{\phi \in \Lambda_n} \phi(x)\right)\right)^{1/p} = 1.$

- 2.1. PROPOSITION. The function h: $X \to l_p(\Lambda)$ given by $h(x) = \hat{x}$ has the following properties.
 - (1) h is an embedding,
 - (2) h(X) is a linearly independent subset, and
- (3) for every $x \in X$, and every closed subset $F \subseteq X$ with $x \notin F$, there exists a continuous linear functional $\psi: l_p(\Lambda) \to \mathbf{R}$ such that $\psi(h(F)) = \{0\}$ and $\psi(h(x)) \neq 0$.

For the proof of (1) and (2) (for the case p=2), see [**BP**, p. 193]. Property (3) is built into the construction, since we can use the "projection onto a ϕ -coordinate", i.e. the functional $\psi(z) = z(\phi)$ for appropriately chosen $\phi \in \Lambda_n$. (Pick $n \ge 1$ such that $1/2^n < d(x, F)$, and find $\phi \in \Lambda_n$ such that $\phi(x) \ne 0$.)

Note that if X is a separable metric space, we can arrange that Λ is countable.

The construction for $p = \infty$ can also be found in [**BP**, p. 49]. Define the space $Y = X \cup \{y_0\}$, with the metric \tilde{d} that extends d and has the property that $\tilde{d}(x, y_0) = 1$ for $x \in X$. Let $A = \{\alpha \colon Y \to \mathbf{R}; \ \alpha(y_0) = 0, \ |\alpha(y_1) - \alpha(y_2)| \le \tilde{d}(y_1, y_2) \$ for all $y_1, y_2 \in Y\}$. Finally, define $h \colon X \to l_{\infty}(A)$ by $h(x) = \hat{x}$, where $\hat{x}(\alpha) = \alpha(x)$.

- 2.2 Proposition. The map h is an isometry, h(X) is a linearly independent subset of $l_{\infty}(A)$, and
- (4) for every $x \in X$ and every closed subset $F \subseteq X$ with $x \notin F$ there exists a continuous linear functional $\psi: l_{\infty}(A) \to \mathbf{R}$ such that $\psi(h(F)) = \{0\}$ and $\psi(h(x)) \neq 0$.

Again, (4) can be proved using the appropriate projection. If we set $\alpha(y) = \tilde{d}(y, F \cup \{y_0\})$, then the functional $\psi: l_{\infty}(A) \to \mathbb{R}$ defined by $\psi(z) = z(\alpha)$, has the desired property. The rest is proved in [BP].

- 3. Countable-dimensional linear spaces. We can construct many interesting normed spaces by taking span h(X) where $h: X \to E$ is an embedding of a metric space into a normed space such that h(X) is a linearly independent subset (e.g. we can use the construction described in §2). The question we want to address in this section is: When is span h(X) countable dimensional? (A separable metric space Z is countable dimensional if it can be represented as a countable union of zero-dimensional subsets.) The obvious necessary condition is that X must be countable dimensional.
- 3.1. EXAMPLE. Choose a Hamel basis X of $l_2 = l_2(\mathbf{N})$, and let $f: C \to X$ be a one-to-one surjective map from a zero-dimensional separable metric space C. Assuming that $C \subseteq [\frac{1}{2}, 1]$, we set

$$X' = \left\{ \frac{f^{-1}(x)}{\|x\|_2} \cdot x \colon x \in X \right\}.$$

Then X' is also a Hamel basis for l_2 , and $x' \mapsto ||x'||_2$ defines a homeomorphism $X' \approx C$. Therefore dim X' = 0 and span $X' = l_2$ (which is not countable dimensional).

It is known (cf. [BP, p. 282]) that if X is a countable union of finite-dimensional compacta, then span h(X) is countable dimensional (for every embedding $h: X \to E$ such that h(X) is a linearly independent subset of E). We prove in this section that if h is a "nice" embedding, then span h(X) is countable dimensional, provided X is countable dimensional. The standard embeddings described in §2 possess this nice property.

3.2. THEOREM. Let $h: X \to E$ be an embedding of a countable dimensional separable metric space X into a linear metric space E such that h(X) is a linearly independent subset of E. Suppose that h(X) satisfies the following property.

For every
$$x \in X$$
 and every closed subset $F \subseteq X$ with $x \notin F$ (*) there exists a continuous linear functional $\psi \colon E \to \mathbf{R}$ such that $\psi(h(F)) = \{0\}$ but $\psi(h(x)) \neq 0$.

Then span $h(X) \subseteq E$ is countable dimensional.

PROOF. To an ordered collection $(N; i_1, ..., i_s)$ of positive integers with $i_1 < \cdots < i_s$ we assign the collection $T(N; i_1, ..., i_s) = \{(t_1, ..., t_m) \in \mathbb{R}^m: -N \leq t_1 = \cdots = t_i, t_{i_1} + 1/N \leq t_{i_1+1} = \cdots = t_{i_2}, t_{i_2} + 1/N \leq t_{i_2+1} = \cdots = t_{i_3}, ..., t_{i_{s-1}} + 1/N \leq t_{i_{s-1}+1} = \cdots = t_{i_s} = t_m \leq N, |t_i| \geq 1/N \text{ for all } i\}$. Denote by $X(N; i_1, ..., i_s)$ the collection of points z in span h(X) that can be represented as $z = t_1 h(x_1) + \cdots + t_m h(x_m)$ for some $(t_1, ..., t_m) \in T(N; i_1, ..., i_s)$, and some $(x_1, ..., x_m) \in X^m$ with $x_i \neq x_j$ for $i \neq j$. Note that span $h(X) - \{0\}$ can be represented as the countable union of such subsets (for different choices of $(N; i_1, ..., i_s)$). Consequently, it suffices to prove that $X(N; i_1, ..., i_s)$ is countable dimensional.

Define a map χ : $\{(x_1,\ldots,x_m)\in X^m:\ x_i\neq x_j\ \text{for}\ i\neq j\}\times T(N;\ i_1,\ldots,i_s)\rightarrow X(N;\ i_1,\ldots,i_s)$ by

$$\chi(x_1,...,x_m,t_1,...,t_m) = t_1h(x_1) + \cdots + t_mh(x_m).$$

Noting that the domain of χ is countable dimensional (since it is contained in $[-N, N]^m \times X^m$), the rest of the proof follows from the next two lemmas.

- 3.3. Lemma. χ is a closed $i_1!(i_2-i_1)!\cdots(i_s-i_{s-1})!$ -to-1 surjection.
- 3.4. LEMMA. If $f: X \to Y$ is a closed q-to-1 map between separable metric spaces $(q \ge 1)$, and if X is countable dimensional, then Y is countable dimensional.

PROOF OF LEMMA 3.3. From the uniqueness of the representation of $z \in \text{span } h(X) - \{0\}$ as a linear combination of elements in h(X) (up to a permutation), it follows that χ is a $i_1!(i_2-i_1)!\cdots(i_s-i_{s-1})!$ -to-1 surjection. To show that χ is closed, it suffices to prove that if $(z_k)_{k=1}^{\infty}$ is a sequence in the domain of χ , and if $\chi(z_k) \to \chi(z)$ for some z in the domain of χ , then $(z_k)_{k=1}^{\infty}$ has a convergent subsequence. To set the notation, let $z_k = (x_1^k, \ldots, x_m^k, t_1^k, \ldots, t_m^k)$, $z = (x_1, \ldots, x_m, t_1, \ldots, t_m)$. Passing to a subsequence, we may assume that

- (5) $t_i^k \to t_i^0$, i = 1, ..., m, and
- (6) $(x_i^k)_{k=1}^{\infty}$ either converges, or does not have a convergent subsequence, i = 1, ..., m.

For i = 1, ..., m let $\Omega_i = \{j: x_j^k \to x_i\}$. By (*) we can choose a linear functional $\psi: E \to \mathbf{R}$ such that

- $(7)\,\psi(h(x_i))\neq 0,$
- $(8) \psi(h(x_j)) = 0$, for $j \neq i$, and
- (9) $\psi(h(x_j^k)) = 0$, for all $j \notin \Omega_i$ and all but finitely many values of k. Passing to the limit of the left-hand side in $\psi \chi(z_k) \to \psi \chi(z)$ it follows that

(10)
$$\sum_{j \in \Omega_i} t_j^0 = t_i.$$

Since $t_i \neq 0$, we must have $\Omega_i \neq \phi$ (i = 1, ..., m). Moreover, since $\Omega_1, ..., \Omega_m$ are pairwise disjoint subsets of $\{1, ..., m\}$, it follows that card $\Omega_i = 1, i = 1, ..., m$, and hence $\Omega_1 \cup \cdots \cup \Omega_m = \{1, ..., m\}$. In particular, $(z_k)_{k=1}^{\infty}$ converges.

PROOF OF LEMMA 3.4. For $p=1,2,\ldots$ denote $Y_p=\{y\in Y: d(x,x')\geqslant 1/p \text{ for all } x,x'\in f^{-1}(y) \text{ with } x\neq x'\}$. Since $Y=Y_1\cup Y_2\cup\cdots$ it suffices to show that Y_p is countable dimensional for each p. We will prove that $f|f^{-1}(Y_p):f^{-1}(Y_p)\to Y_p$ is a local homeomorphism (and hence, by separability, Y_p can be covered by countably many open sets, each of which embeds into $f^{-1}(Y_p)\subseteq X$). For $x\in f^{-1}(Y_p)$ consider

$$f|: \overline{N_{1/3p}(x)} \cup f^{-1}(Y_p) \to f\overline{(N_{1/3p}(x))} \cap Y_p$$

 $\overline{(N_{1/3p}(x))}$ is the closed 1/3p-ball about x). Clearly, this a closed one-to-one surjection. To finish the argument, observe that $\overline{f(N_{1/3p}(x))} \cap Y_p$ contains a neighborhood of f(x) in Y_p . (If $y \in Y_p$ is close enough to f(x), then $f^{-1}(y)$ is contained in 1/3p-neighborhood of $f^{-1}f(x)$. Since $y \in Y_p$, no pair of points of $f^{-1}(y)$ can be contained in 1/3p-neighborhood of some $x' \in f^{-1}f(x)$. Using that card $f^{-1}(y) = \operatorname{card} f^{-1}f(x)$, it follows that $f^{-1}(y)$ intersects $\overline{N_{1/3p}(x)}$.)

- **4. Examples of linear maps raising topological dimension.** We will need the following observation concerning linear extension of continuous maps.
- 4.1 LEMMA. Let X be a Hamel basis in a normed linear space $(E, |\cdot|_1)$ and let F: $E \to Y$ be a linear map of E into a Banach space $(Y, |\cdot|_2)$ given by

$$F\left(\sum_{i=1}^{n} t_i x_i\right) = \sum_{i=1}^{n} t_i f(x_i), \quad \text{where } x_i \in X, t_i \text{ is a real number for } i = 1, \dots, n,$$

and $f: X \to Y$ is a continuous map.

Let || be a new norm on E defined by $|x| = (|x|_1^2 + |F(x)|_2^2)^{1/2}$. Then:

- (i) the map $F: (E, ||) \rightarrow (Y, ||_2)$ is continuous,
- (ii) if the Hamel basis X satisfies the condition (*) of 3.2 with respect to the norm $|\cdot|_1$, then X satisfies (*) with respect to $|\cdot|$,
 - (iii) the norm | | induces the same topology on X.

Let us observe that F may not be continuous as a map of $(E, ||_1)$ into $(Y, ||_2)$. For instance, let $E = \operatorname{span} X$, where $X = \{(x_i) \in l_2: x_i = t^i, t \in [\frac{1}{3}, \frac{2}{3}]\}$. Let f be a continuous real-valued function on X such that $f^{-1}(0) = \{(t^i) \in X: t \in [\frac{1}{3}, \frac{1}{2}]\}$ and $f^{-1}(1) = ((\frac{2}{3})^i)$. The set X is a Hamel basis for E and $\operatorname{span} f^{-1}(0)$ is dense in E (cf. $[\mathbf{BP}, p. 267]$). Hence the linear extension F of f is not continuous because F(x) = 0 for $x \in \operatorname{span} f^{-1}(0)$ and $F(((\frac{2}{3})^i)) = 1$.

Let us recall that a linear subspace of the Hilbert space is called a pre-Hilbert space.

4.2. Example. There exists a continuous one-to-one linear surjection $F: E \to l_2$ of a countable-dimensional pre-Hilbert space E onto l_2 .

PROOF. Let X be the zero-dimensional Hamel basis of the Hilbert space l_2 constructed in §3, and let $h: X \to l_2$ be an embedding of X onto linearly independent subset of l_2 described in §2. Let us consider the linear space $E = \operatorname{span} h(X)$ with the norm given by $|y| = (||y||_2^2 + ||F(y)||_2^2)^{1/2}$ for $y \in E$, where $F: E \to l_2$ is the linear extension of the map $h^{-1}: h(X) \to X$. (Note that the norm $|\cdot|$ is induced by an inner product $x * y = x \cdot y + F(x) \cdot F(y)$ for $x, y \in E$. Thus the linear completion of E is isomorphic to l_2 , and hence E is a pre-Hilbert space.)

By Lemma 4.1 and Theorem 3.2, (E, | |) is a countable-dimensional pre-Hilbert space, and the linear map $F: (E, | |) \rightarrow (l_2, || ||_2)$ is a continuous, one-to-one surjection.

Repeating the above construction we obtain

4.3. Example. Let Y be a separable Banach space. There exists a continuous, one-to-one linear surjection $F: E \to Y$ of a countable-dimensional normed linear space E onto Y.

A metric space X is σ -finite-dimensional-compact if X is a countable union of finite-dimensional compacta. The next example answers a question posed in [MM].

4.4 EXAMPLE. There exists a continuous linear surjection F of a σ -finite-dimensional-compact pre-Hilbert space V onto the pre-Hilbert space $\Sigma = \{(t_i) \in I_2: \sum_{i=1}^{\infty} (it_i)^2 < \infty\}$ which contains the infinite-dimensional compact convex set $Q = \{(t_i) \in I_2: \sum_{i=1}^{\infty} (it_i)^2 \leq 1\}$.

PROOF. Let $f: I \to Q$ be a continuous surjection of the interval I = [0, 1] onto Q and let $h: I \to l_2$ be an embedding onto a linearly independent subset of l_2 described in §2. The linear extension F: span $h(I) \to \Sigma$ of the map $fh^{-1}: h(I) \to Q$ is a continuous linear surjection of the σ -finite-dimensional-compact pre-Hilbert space V = (span h(I), | |) onto Σ , where $|x| = (||x||_2^2 + ||F(x)||_2^2)^{1/2}$ (see [BP, p. 282] for the proof that span h(I) is σ -finite-dimensional-compact).

4.5. Example (cf. [MM]). There exists an open linear surjection of a σ -finite-dimensional-compact pre-Hilbert space onto a pre-Hilbert space which is not countable dimensional.

PROOF. Let $F: V \to \Sigma$ be the map constructed in Example 4.4. Let $Y = \sigma/\text{Ker } F$ be the quotient space. Then the quotient map $T: V \to Y$ is open. The space Y cannot be countable dimensional because it is σ -compact and we can map Y onto Σ by a continuous, one-to-one map.

4.6. REMARK. Each continuous linear map between metric linear spaces is a UV^{∞} -map (a map $f: X \to Y$ is a UV^{∞} -map if for every $y \in Y$ and every open set U containing y, there exists an open set $V, y \in V \subset U$, such that $f^{-1}(V)$ is contractible in $f^{-1}(U)$). By [H] the linear maps constructed in §4 are fine homotopy equivalences (the map $f: X \to Y$ is a fine homotopy equivalence if for every open cover U of Y there exists a map $g: Y \to X$ such that $f \circ g$ is U-homotopic to id_Y and $g \circ f$ is $f^{-1}(U)$ -homotopic to id_X). Hence the Examples 4.2, 4.3 show that even one-to-one fine homotopy equivalences can raise dimension (cf. [A]).

REFERENCES

- [A] F. D. Ancel, *Proper hereditary shape equivalences preserve property* C, Topology and its Appl. (to appear).
- [BP] C. Bessaga and A. Pełczynski, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
- [H] W. E. Haver, Mappings between ANR's that are fine homotopy equivalences, Pacific J. Math. 58 (1975), 457-461.
- [MM] J. van Mill and J. Mogilski, *Property C and fine homotopy equivalences*, Proc. Amer. Math. Soc. 90 (1984), 118-120.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

INSTITUTE OF MATHEMATICS, UNIVERSITY PKIN, 00 - 901 WARSAW, POLAND (Current address of Jerzy Mogilski)

Current address (Mladen Bestvina): Department of Mathematics, University of California, Berkeley, California 94720