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NECESSARY AND SUFFICIENT CONDITIONS

FOR THE SOLVABILITY OF

A NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM

J. MAWHIN, J. R. WARD AND M. WILLEM

Abstract. The dual least action principle is used to prove a necessary and sufficient

condition for the solvability of a Dirichlet problem of the form u" + u + f(x, u) = 0,

u(0) = u(tr) = 0 when/(.x, •) is nondecreasing and /("/(v, v) dv satisfies a suitable

growth condition.

1. Introduction. Special cases of the Dirichlet problem

m u"(x) + u(x) +f(x,u(x)) = 0,        xg7=[0, ir].

u(0) = u(tt) = 0,

where/(x, ■) is nondecreasing for each fixed x G 7, have been recently considered

by Fuôik [6], Schechter, Shapiro and Snow [9] and Cesari and Kannan [4], who

considered the existence of a solution of (1) when f(x, u) = g(u) - h(x) with

h G L2(I), g continuous nondecreasing and

(2) \g(u)\^Cx + C2\u\,       wgR,

for some C, > 0 and C2 > 0. In [6], the existence is obtained under the supplemen-

tary conditions that

(3) g(-u) = -g(u), lim   g(u)=+cc
n —* + oc

and C2 < 0.0962, and this condition is improved in [9] to C2 < 0.24347. Those

supplementary conditions are partly weakened in [4] into

(4) limsup^=C2

|«|-00

and

(5) C2 < 0.443.

All those results are proved by a combination of the alternative method and

Leray-Schauder degree arguments.
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That a condition of the form (2) and (5) cannot be completely avoided is shown

by the elementary example (corresponding to g(u) = 3u)

u"(x) + 4m(x) = sin2x,       x g 7,
(6)

w(0) = u(ir) = 0,

which has no solution, and that a condition of the form (3) or (4) cannot as well be

completely avoided is shown by the elementary example (corresponding to g(u) = 0)

, , u"(x) + u(x) = sin x,        x g /,

«(0) = u(tt) = 0,

which has no solution as well. The aim of this paper is to use the dual least action

principle of Clarke and Ekeland [5] (see [8, 10] for details and references) to improve

substantially the above quoted results for problem (1) in the following way. We first

replace (2)-(5) by a condition on £(x, u) = J0"f(s, v) ds explicity stated below and

which is implied, in the special case of/(x, u) = g(u) — h(x), by condition (2) with

the sole restriction

(8) 0 < C2 < 3.

We notice that (8) is optimal with respect to example (6). Under this restriction on £

we then state a necessary and sufficient condition on / under which the problem (1)

has at least one solution. Needless to say, this necessary and sufficient condition

contains as special cases the conditions (3) or (4), as it can be checked in a very

elementary way, and, in the case of g = 0, it reduces exactly to the condition

(violated in example (7))

h(x)sin xdx = 0
o

of the Fredholm alternative for the problem

u" + u = h(x),       t/(0) = u(ir) = 0.

Notice also that when/(x, •) is nonincreasing for each fixed x g 7, then a simple

upper and lower solution argument, like in Kazdan and Warner [7], shows that our

condition on /without any growth restriction on £ is necessary and sufficient for the

solvability of (1).

We now state explicitly the theorem proved in this paper. Let v + = max(i;,0),

v~= max(-/j,0) and let us say that /: 7 X R -» R satisfies the Carathéodory condi-

tions for L2(I) when/(x, •) is continuous for a.e. x g 7,/(•, u) measurable for each

u G R, and |/(x, u)\ < hR(x) whenever |w| < R with/iR g L2(I).

Theorem 1. Assume that f: /xR^R satisfies the Carathéodory conditions for

L2(I) and that f(x, ■) is nondecreasing for a.e. x G 7. Assume, moreover, that there

exists a + G LX(I) anda_*= Lx(I) such that:

(i) inf/essa + > 0, inf,essa_> 0.

(ii) a+(x) < 3 and a_(x) < 3 for a.e. x G I.

(iii)/o"{[3 - a+(x)](sin+2x)2 + [3 - a_(x)](sin" 2x)2} dx > 0.
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(iv) For each e > 0 there is a ß_ (resp. ß+) in Ll(I) such that for a.e. x G / and all

u < 0 (resp. u > 0) we have

2u2F(x, u) < a_(x) + u~2ß_(x) + e    (resp. a + (x) + u'2ß+(x) + e).

Then problem (1) has at least one solution if and only if there exists a G R such that

(9) f(a) — I f(x, asin x)sin x dx = 0.
•'o

Notice that (9) is equivalent to the existence of a critical point for the function £:

R —> R defined by

_ rrt

F(a) = j    F(x, asindx) dx

so that a sufficient condition for (9) to hold will be that either F(a) -» +00 or

F(a) -» -00 whenever |a| -» 00. Conditions of this type were first introduced by

Ahmad, Lazer and Paul [2].

The proof of Theorem 1 will be given in §3 and some preliminary lemmas are

stated and proved in §2.

When (2) is satisfied, we have

2
£(x, u) < Cx\u\ + 2~C2|«|   +|/i(x)||m|

and, hence, for each e > 0

(10) £(x, u) < \(C2 + e)u2 + ^[Cx + \h(x)\]2.

Therefore, if we take a + = a_= C2, conditions (i)-(iv) reduce to (8). But, by a result

of Brézis-Nirenberg, condition (10) implies for/a growth restriction of the form

(11) \f(x,u)\*¿C3(x) + 2(C2 + e)\u\,

and the constant 2(C2 + e) is indeed optimal (see e.g. [8 and 10] where details and

reference about the used variational techniques can be found).

We conclude this Introduction by exhibiting an example which deals with jumping

nonlinearities (i.e. when a_# a+). If we take/(x, u) = cu + — h(x) for some c G R,

then it is easily shown that

limsup2£(x, u)/u2 = 0,        limsup2£(x, u)/u2 = c
«—> -OO «—»+00

in the sense of (iv) and, by taking a+(x) = c and a_(x) equal to any constant in ]0, 3[

we see that conditions (i)-(iii) are satisfied if

(12) 0<c<3.

Moreover,

(-/   h(x)sin x dx if a sg 0,

/(")=     *°    r
\2ca - f    h(x)sinxdx     ifa>0,
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which shows that the problem

u"(x) + u(x) + cu + (x) = h(x),        x G 7,

u(0) = u(ir) = 0

has a solution, when (12) holds, if and only if

I    h(x)sin x dx > 0.
•'o

This complements results of Aguinaldo and Schmitt [1] and Castro [3] dealing with

problems of the form

u"(x) + u(x) — cu~(x) = h(x),       x g 7,

«(0) = u(tt) = 0

with c > 0, i.e. with jumping nonlinearities with graph below that of the line v = u,

in contrast with our situation which covers jumping nonlinearities with graph

between the lines v = u and v = Au.

2. Preliminary lemmas. We state and prove simple preliminary results required in

the proof of Theorem 1. For every h g L2(I), such that

h(x)sin x dx = 0,
o

let us denote by Kh the unique solution of the problem

u"(x) + u(x) = h(x),       u(0) = «(w) = 0,

such that

«(x)sin x dx = 0.
o

Moreover, for each v g L2(I), let us write

v(x) = v(x) + v(x),

where

v(x) = —   f   v(s)sinsds sin x    and     /   v(s)sins ds = 0,

so that, with obvious notation, £2(7) = £2(7) © L2(I). Using Fourier series and

Parseval equality, it is easy to show that the inequality

(13) [w(x)(Kw)(x)dx> -\ fw2(x)dx

holds for every w g L2( I ) with equality if and only if w has the form w(x) = B sin 2x

for some B g R.

Lemma 1. Let a + e LX(I) and a„G L°°(7) be such that the assumptions (i)-(iii) of

Theorem X  are satisfied.  Then there exists 8 = 8(a+, a_) > 0 such that for each
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w G L2(I) one has

[™ + (x)\2   ,   [w-(x)Vi    \       1   (\     t    \i „   w    \       \w   \x)\ wlxl
y(w) m - /   w(x)(Aw)(x) + -l-)-f- + -^-p

1Jl\ a + (X) a-(x)

5 lw2(x) dx.
Jt

dx

> 8

Proof. We first show that y(w) = 0 if and only if w = 0. Clearly, y(0) = 0. Now,

ify(H>)= 0, then by (13)

(14)

and by assumption (ii) and (13)

0 = y(w) > \ j\K,(x)(Kw)(x) + \w2(x) dx ^ 0

so that, necessarily, w(x) = Z?sin2x. Introduced in (14), this gives

El
2 f, ^-iy*n+2,f+(-^-l\(*n-2,f dx = 0,

and hence B = 0 by condition (iii). Now assume that the conclusion of the lemma is

false. There will be a sequence (wn) in ¿2(7) and a w g L2(7) such that

IK||t2 = L    wnt^w±,   Kwn-*Kw,    y(w„)-»0

when n -> oo. Consequently,

WU)Y . [»;(*)]
/ — + dx-* - fw(x)(Kw(x)) dx

_(x) a_(x)

and, hence, by weak lower semicontinuity of a continuous convex functional,

mw + (x)}2  ,   [w-(x)j
+ dx < - / w(x)(Aiv(x)) dx,

Ji_(x) a_(x)

which gives y(vv) < 0 and hence w = 0. But then, as

y(w„) > jfwn(x){Kwn(x))(x) dx + ->0,

we get a contradiction letting n -* oo.

The following lemma will provide the proof of the necessity of (9).

Lemma 2. Assume that the function f: /XR^R satisfies the Carathéodory

conditions for L2(I) and that f(x, ■) is nondecreasing for a.e. x G 7. If (X) has a

solution, then there exists a g R such that (9) holds.

Proof. If (1) has a solution u, then by the Fredholm alternative

JÇ-7T
f(x, u(x))sin x dx = 0.

n
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It follows from elementary arguments that for all x g /

(16)
u(x)

sin x
< — max|«'(5)|.

¿-   je/

Therefore,   using   (15)   and   the   monotonicity   of f(x, ■),   we   obtain,   if   R =

maxJ6E/ \u'(s)\,

/(-§*H*/(f*)
and the result follows from the intermediate value theorem.

3. Proof of Theorem 1. The necessity follows directly from Lemma 2. We divide

the sufficiency proof into two parts.

(a) Existence of a solution for a perturbed problem. Let e > 0, fe(x, u) = f(x, u) +

eu, £f(x, u) = f0"ft(x, v) dv and let \pe be defined on 12(7) by

1

Ji
v(x)(Kv)(x) + F*(x,v(x))

where £f*(x, • ) denotes the Legendre transform of £E(x, ■ ) implicitly defined by

(17) F*(x,v) = vu- Fe(x,u),        v=ft(x,u) = (dFe/du)(x,u),

so that, alternatively,

(18) £e*(x, v) = sup [vw - ££(x, w)].
M  GR

Let T) > 0 be such that

1
(19)

a + (x) + 2t)

1

a + (x)
8.

1 1

a_(x)
-8,

a_(x) + 2tj

where 8 = 8(a + , a_) is given by Lemma 1. By assumption (iv) there exists ß g L2(I)

such that

(20)     £(x,M)< (« + (x) + 7,)[(M + )2/2J +(a_(x)+T))\(u-)2/2\ + ß(x)

for a.e. x g 7 and all u g R. Consequently, by (18) and (20), we get

(O2 , (tO2

2(a + (x) + 7) + e)   '   2(a_(x) + 7] + e)

and therefore, if 0 < e < rj, we have by (19) and Lemma 1,

-ß(x)

(21)

+.(.)> fl lr(*)W(x) + i¿Wl + iiLM_._|^,j _A(¿ A

5 il    i|2 m _m

^^Mo-Wßh}.

Thus xpe is coercive and is weakly lower semicontinuous as the sum of a weakly

continuous and a continuous convex function. Consequently, \pe has a minimum vÊ

on L2(I) which satisfies the Euler equation

Kvt(x) +(d/dv)F*(x, vc(x)) = üt(x),       x g 7,
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for some wf g L2(I). Letting ut = ûE — Kve, we get

u,(x) = (d/av)F*(x, v,(x)),       xel.

Consequently, by (17)

vt(x) = (d/du)Fc(x, ut(x)),       xG7,

i.e. by definition of A

w;'(x) + M£(x)+/f(x,Mf(x)) = 0,        XG/,

K.(0) = ii.(fr) = 0.

(b) A posteriori estimates on ue and limit for e —> 0. By assumption (9) the function

v, defined by

(23) v(x) = f(x, asin x),

belongs to L2(I), and hence,

(24) 4,¿or) < *,(») < j \v(x)(Kv)(x) + F*(x, v(x))j dx,

where, for a.e. x g 7,

£*(x, z) = sup [zy - F(x, y)]
i<=R

is the Fenchel transform £*(x, •) of the convex function £(x, •). Now (23) tells that

a sin x is a critical point of the concave function^ >-» v(x)y — F(x, y) and hence an

absolute maximum, so that

(25) F*(x, v(x)) = v(x)asin x — F(x, asin x).

From (21), (24) and (25) we deduce that

%fö(x)dx<C(a)+Mi}

and hence,

\\u'e' + uj£2< Cx(a,ß,8)

for all 0 < e ^ i\. From

lk' + «J^ = k' + "«j|^>-3||«l£a,
we easily see that

\\üt\\I?^C2(a,ß,8),        \\ü';\\l}^C3(a,ß,8)

and hence,

(26) ||«J|C, < C4(a,ß,8).

On the other hand, it follows from (22) that if we(x) = acsin x, then

(27) eat + - Íf(x,ue(x))sinxdx = 0.

By (9), the monotonicity of f(x, •), inequality (16), and (26), such an equality is

impossible if

ae>\a\+(ir/2)C4(a,ß,8)    or    at < -\a\ - (m/2)CA(a, ß, 8)
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because, say, in the first case we should have on [0, it]

me(x) = atsinx + wf(x)

^ asinx +(Tr/2)C4(a, ß,8)sin x —(,n/2)CA(a, ß, 8)sm x

= a sin x

and hence, the left-hand member of (27) should be positive. Consequently,

|aJ<|a| + (V2)C(a,/8,S)

and then

Wd <C5(a,ß,8),       |<1|L2<C6(a,¿8,5).

Those conditions and Ascoli and Arzela's theorem imply the existence of m g C'(7)

and of a sequence (e„) in ]0, tj] such that e„ -* 0 and uf —> u in Cl(I) when n -* oo.

Consequently, u(0) = u(tt) = 0 and, for each « G A and each x G 7,

u'c(x) - «' (o) + n «.;<*) +/ji, «e»)] & = o.
"'0

Letting « —> oo, we get

u'(x) - u'(0) + /"'"[«(j) +f(s, u(s))] ds = 0,

i.e.

u"(x) + u(x) +/(x, u(x)) = 0,        X G 7,

and the proof is complete.
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