PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 93. Number 4. April 1985

ON THE KERNEL OF A MARKOYV PROJECTION ON C(X)
ROBERT E. ATALLA

ABSTRACT. Let X be a compact metric space and L a closed linear subspace of C( X),
the real valued continuous functions on X. We give necessary and sufficient
conditions of an algebraic nature for L to be the kernel of a Markov projection P on
C(X). We also characterize compact spaces for which our result holds as those for
which the Borsuk-Dugundji simultaneous extension theorem holds.

1. Introduction. A projection P on C(X) is Markov if Pe = e (where e is the unit
function) and P > 0, i.e., f > 0 implies Pf > 0. If P* is the adjoint of P and §, the
Dirac measure at x, let p, = P*§,, so that p, is a probability measure, and for
f € C(X) we have Pf(x) = [fdp,. Let P be the set of Borel probability measures
on X, a compact convex set in C( X)*, relative to the weak*-topology. Then P*(P) is
a compact convex set, and each extreme point m has the form p, for some
x € X—just note that p*~!(m) is a convex compact subset of P, and hence contains
an extreme point, which is a §, for some x € X [4, p. 34].

If m is a positive Borel measure, supp m denotes the closed support set of m, and
if m is any Borel measure, supp m is defined as supp |m|. If P is a Markov projection,
we define supp P = closureU{supp m: P*m = m}. (Note that m € ranP* iff P*m
= m.)

The structure of P is pretty well known. Birkhoff [1] and Kelley [3] characterized
those P for which ran P is an algebra by the following properties: for each x € X, p,
is an extreme point of P*(P), and for each f € C(X), Pf is constant on supp p,.
Moreover, P satisfies the averaging identity P( fPg) = PfPg. Lloyd [S] showed that if
P is an arbitrary Markov projection, then Pf is constant on supp p, whenever p, is an
extreme point of P*(P). It follows easily that the natural restriction of P to a
projection on C(supp P) satisfies the Birkhoff-Kelley conditions. Later Lloyd and
Seever found the following identity for all Markov projection: P(fPg) = P(PfPg)
([6 and 7], see also [9)).

This formula may be rewritten as 0 = P((f — Pf)Pg), ie, if f, € ker P and
go € ran P, then f,g, € ker P. This condition is not quite strong enough to char-
acterize the kernel of a Markov projection, so we note a natural property of such
projections, namely if f > 0, then Pf = 0 iff f vanishes on supp P. This is an obvious
consequence of the fact that for x € X, p, is a probability measure. Thus, if P is a
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Markov projection we have

() ker P + ran P = C(X),

(2) (ran P)(ker P) C ker P,

(3) I = {f: Pf* =0} is an ideal in C(X).
(Note that if m is a nonpositive Borel measure with m(e) = 1, and we define P by
Pf(x) = m(f) forall f € C(X), then (1) and (2) hold, but not (3).)

Our main result is

THEOREM. Let X be compact metric, L a proper closed linear subspace of C(X), and
M= {ffLcL}.If

(@)L + M = C(X), and

(b) I = {f: f2€ L} is an ideal,
then there exists a Markov projection P on C( X)) such that L = ker P andran P C M.

2. Preliminaries. Throughout, L will be a closed subspace of C( X), the real valued
continuous functions on X, and M and I are as defined in the Theorem. In this
section we study the structure of I after we give some definitions.

Let L*={me& C(X)*: m(f)=0 for all fe L}, and let (L*), be the closed
unit ball in L+, a compact convex set in the weak*-topology. Note that f € L iff
m(f) =0 for all m € L+ (by Hahn-Banach). Obviously, f € M iff fdm € L* for
alme L+, so M ={fe C(X): fL~C L*}. Further, f € M iff f is constant on
supp m for each extreme point m € (L*), [4, pp. 35-36]. We also define Z(I)
= {f710): fe I} and supp L* = closureU {suppm: m € L*}. If f€ C(X) and
A C X, then f is the restriction of ftoA,and L, = { f,: f€ L}.

2.1 REMARK. Z(I) C supp L™*.

PROOF. If x & supp L+, then by complete regularity there exists f € C(X) which
vanishes on supp L* , but f(x) # 0. Thenf> € L,sof € I and x & Z(I).

2.2 PROPOSITION. The following are equivalent:
(a) I is an ideal,
(b) Z(1) = supp L+.

PROOF. (b) implies (a). We show f € I iff supp L* c f~%(0), so that I is the ideal
{g: supp L*C g '(0)}. If f € I, then (b) implies supp L* C f~1(0). If suppL*C
f%0). then forallm e L*,0 = m(f?),sof>€ Landf € I

(a) implies (b). To show supp L+ c Z(I),letf€ Iandm € L* . Letm =m™— m"~
be the Lebesgue decomposition with m™* supported by the Baire set 4 and m~
supported by X\ 4. Let g, € C(X) with 1 > g, >0 and g, » 1, |m|-ae. Now
fg, € Isof’g? € L,and

[12dm™ = [*1,dm = lim /fzg,f dm =0

since m € L+ . Likewise [f>dm =0, so f? =0 |m|-a.e. By continuity, supp m C
f7%0), and since m is arbitrary, supp L* c f~(0).

2.3 PROPOSITION. If M + L = C(X) and m is an extreme point of (L*),, then
m(e) # 0.
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PROOF. Let S = supp m. (Since L is proper, m # 0.) If f € M then fis constant on
S. By hypothesis C(S) = Lg + M. But then C(S) = L + constants, so if g € C(S)
we have g = h + ce with h € L and c constant, whence m(g) = m(h) + cm(e) = 0
+ cm(e). If m(e) = 0, then m = 0, which is impossible.

2.4 PROPOSITION. If L + M = C(X), then (a) and (b) in 2.2 are equivalent to
©IcM.

PROOF. (b) implies (c). If f € I, then f is constant (in fact, 0) on supp m whenever
m € L+ . Hence, f € M [4, pp. 35-36].

(c) implies (b). By 2.1 we always have Z(I) C supp L* . Conversely, if f € I, then
(c) implies f is constant on supp m whenever m is extreme in (L*),. But since f> € L
as well, m(f?)=0. Since m(e)# 0, f> must be 0 on suppm. It is an easy
consequence of Krein-Milman that sets of the form supp m, with m extreme in
(L*),, are dense in supp L, so supp L* C f ~}(0).

2.5 PROPOSITION. Let Iy = {f€ C(X): f€ L and f> € L}. If I is an ideal, then
I =1, andhencel C L N\ M, provided L + M = C(X).

PRrOOF. Clearly, I, C I. If I is an ideal, then Z(I) = supp L+, by 2.2,s0if f € I,
then 0 = m(f) = m(f?) for all m € L*, whence f € L as well as f?> € L. Thus

feli,.

2.6 REMARK. Propositions 2.2 and 2.4 remain true if / is replaced by /. This fact
is not needed below, and we omit the easy proof. In §4 we give some examples on
the relation between 7 and /,,. :

3. Proof of Theorem. (i) Let Z = Z([I). By 2.4, hypotheses (a) and (b) of the
Theorem imply Z = supp L*. We now prove I = L N M. By 2.5 we already have
I c LN M. Conversely, if f € L N M, then f is constant on supp m for m extreme
in (L*),, while m(f) = 0 because f € L. Since by 2.3 m(e) # 0, we have f = 0 on
supp m. It follows that supp L* C f}(0),sof € I.

(i) Since C(X)=L+ M,I=LNM,andZ = Z(I),wehave C(Z)=L, & M,.
Thus, there exists a projection Q on C(Z) whose kernel is L, and whose range is
M. If e, is the restriction of e to Z, then clearly Qe, = e, and it remains to show
that Q > 0 (and then that Q extends to a Markov projection P on C(X)).

(ii1) First we show that because (1) ran(Q)ker(Q) C ker(Q) and (2) ran(Q) is an
algebra, we have Q( fQg) = QfQg for all fand g in C(Z).

0(f0g)=0((f—-Of + 0f)0g) = O((f - Of ) Qg + 0(0fQ¢2))
=0+ QfQg.

(iv) Secondly, if f> 0 and Qf = 0, then f = O on Z. Let F € C(X) satisfy F > 0
and F,=f. Since f€ L,, there exists G € L with G, =f, ie, G,= F,. If
m &€ L+, then suppm C Z, so m(F)=m(G) =0, so F € L. Since F > 0, we have
F1/2 € I ¢ M. Since M is an algebra, F€ M,ie, FELNM=1I,s0f=F,=0.

(v) Finally, suppose there exists f € C(Z) with f > 0, but Qf(x) < 0 for some x.
The set V' = { y: Qf(y) < 0} is open in Z relative to the topology generated by the
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subalgebra M, = Q(C(Z)), which is completely regular, but not Hausdorff. Hence,
there exists g € M, such that g(x)=1, g=0off VV, and 0 < g < 1. Let h = gf.
Then h > 0, and, by (iii), Qh = Q(gf) = Q((Q8)f) = QgQf = gQf. So Qh(x) =
Of(x)<0,0h<0onV,and Qh = 0off V.Letk = h — Qh > 0. Then Qk = 0, so,
by (iv), k =0 on Z, ie., h = Qh. But this is impossible since A(x) > 0 and
Qh(x) < 0. (The last three lines were inspired by a homework paper of graduate
student Pengyuan Chen.)

(vi) We now show that Q extends to a Markov projection on C(X). Since X is
compact metric (and this is the only time metrizabilty is used) there exists a
simultaneous extender, i.e., a positive linear map E: C(Z) — C(X) such that, for
x € Z, f(x) = Ef(x), and also Ee, = e, = e. (See the Borsuk-Dugundji theorem in
[8, p. 365].) We define P by Pf(x) = E(Q(f,)Xx). It is easy to check that P is a
Markov projection, and we must show that L = ker P and ran P C M.

(vil) To show L C ker P, if f€ L, then f, € L,, so Pf= E(Q(f,))= E(0)=0.
To show ker P C L, suppose 0 = Pf = E(Q(f;)). lf m € C(X)* and suppm C Z,
let m , be m considered as an element of C(Z)*, so for g € C(X), m(g) = m_,(g,),
and for g € C(Z), m,(g) = m(Eg). Then me L+ iff m, € (L,)*. Since L, =
ker Q and Q is a projection, (L,)* = ran(Q*), som € L* iff Q*m, = m,. Hence,
forallme L+,

m(f)=m,(f;)=Q*m,(f;)= mz(Q(fz)) = m(E(sz))
=m(Pf)=m(0) =0.
It follows that f € L.
(viil) To show ran P C M, since L = ker P and P is a Markov operator, property
(2) of the introduction says (ran P)L C L.

4. Examples. We assumed metrizability of X only in order to invoke the Borsuk-
Dugundji extension theorem. The following rather surprising result shows that the
extension theorem is necessary as well as sufficient.

4. 1 PROPOSITION. If X is a compact Hausdorff space, the following are equivalent:

(a) If Z is a closed subset, there exists a Markov extension operator E: C(Z) —
C(X).

(b) The result of our main theorem holds for C( X).

PROOF. We already know that (a) implies (b). Conversely, suppose (b) holds. If Z
is closed in X, let L = { f: f, = 0} be an ideal. Then I = L, so I is an ideal, and
M= C(X), so M+ L= C(X). By (b) there exists a Markov projection P with
ker P = L. Now ran P* = L+ = C(Z)*, the space of regular Borel measures on Z.
That is, if m € C(X)* and suppm C Z, then P*m = m. We define the extension
operator E as follows: if f € C(Z), let f; be any norm-preserving extension of f to an
element of C(X), and let Ef = Pf,. To show E is well defined, suppose f, is any
other extension of f to an element of C(X). If x € X, then suppp, C Z, so
Pf\(x) = Pf,(x) = [fdp,. To show E is an extension operator, i.e., (Ef), = f, let
x € Z. Then P*§, =4, so Ef(x) = Pfi(x) = P*$ (f,) = fi(x) = f(x). This com-
pletes the proof.

REeMARK. The extension property fails for X = SN and Z = SN\ N [8, p. 375].
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4.2 ExAMPLE. We give an example to show that the hypothesis L + M = C(X) is
really needed for Propositions 2.3 and 2.4. Let X = {1,2,3,4} with the discrete
topology, so that C(X) is essentiallay R*. For simplicity we identify f € C(X) with
its values (a, b, c,d). Let

L={(a,-a,b,b):a,be R},
so L* is the span of the measures whose values at points are (1,1,0,0) and
0,0,1,-1). Now M = {(a,a,b,b): a,b€ R} so M+ L+ C(X) I=1,=
{(0,0, a, a): a € R}, which is not an ideal. However, I C M, so 2.4 fails. Further,
m = (0,0, 5, — ) is an extreme measure in (L*),, but m(e) = 0, so 2.3 fails.

We now mention without details some other simple examples we have. (i)
L+ M=C(X), I,is not an ideal, I # I,, I ¢ M; (ii) L + M = C(X), I, is an
ideal, I is not; (iii)) L + M # C(X), I,is an ideal, / isnot, and I ¢ M.

5. Remarks. I do not know whether our result is valid in noncommutative
C *-algebras. It is known that for unital JC algebras, the identity P(PaPb) = P(aPb)
holds, where multiplication is the Jordan product [10, Lemma 1.1].

From [2] it is clear that contractive projections are more complicated than Markov
projections, and it is not generally true that (ran P)(ker P) C ker P. In fact, if
f € C-(X) (the complex continuous functions) and m is extreme in (L*),, where
L = ker P, then on supp m, Pf is a constant times the Radon-Nikodym derivative
d|m|/dm. (If P is Markov, then [m| = +m, so Pf is constant on supp m.) It is an
easy consequence of this that (ran P)(ran P)~C mult P, or, equivalently, the identity
P(Pf(Pg) Ph) = P(f(Pg) Ph)—the bar stands for complex conjugation. In fact,
this is proved for general C *-algebras in [11, Corollary 3].

Finally, in view of Proposition 4.1, it would be interesting to find characterizations
—topological or analytic—of compact spaces for which the extension theorem
holds. See [8] for references.

I am grateful to A. Iwanik for pointing out that our result fails if L is not a proper
subspace of C(X).
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