ON THE KERNEL OF A MARKOV PROJECTION ON C(X)

ROBERT E. ATALLA

ABSTRACT. Let X be a compact metric space and L a closed linear subspace of C(X), the real valued continuous functions on X. We give necessary and sufficient conditions of an algebraic nature for L to be the kernel of a Markov projection P on C(X). We also characterize compact spaces for which our result holds as those for which the Borsuk-Dugundji simultaneous extension theorem holds.

1. Introduction. A projection P on C(X) is Markov if Pe = e (where e is the unit function) and $P \ge 0$, i.e., $f \ge 0$ implies $Pf \ge 0$. If P^* is the adjoint of P and δ_x the Dirac measure at x, let $p_x = P^*\delta_x$, so that p_x is a probability measure, and for $f \in C(X)$ we have $Pf(x) = \int f dp_x$. Let P be the set of Borel probability measures on X, a compact convex set in $C(X)^*$, relative to the weak*-topology. Then $P^*(P)$ is a compact convex set, and each extreme point m has the form p_x for some $x \in X$ —just note that $p^{*-1}(m)$ is a convex compact subset of P, and hence contains an extreme point, which is a δ_x for some $x \in X[4, p. 34]$.

If m is a positive Borel measure, supp m denotes the closed support set of m, and if m is any Borel measure, supp m is defined as supp |m|. If P is a Markov projection, we define supp $P = \text{closure} \cup \{\text{supp } m : P*m = m\}$. (Note that $m \in \text{ran } P*$ iff P*m = m.)

The structure of P is pretty well known. Birkhoff [1] and Kelley [3] characterized those P for which ran P is an algebra by the following properties: for each $x \in X$, p_x is an extreme point of $P^*(P)$, and for each $f \in C(X)$, Pf is constant on supp p_x . Moreover, P satisfies the averaging identity P(fPg) = PfPg. Lloyd [5] showed that if P is an arbitrary Markov projection, then Pf is constant on supp p_x whenever p_x is an extreme point of $P^*(P)$. It follows easily that the natural restriction of P to a projection on C(supp P) satisfies the Birkhoff-Kelley conditions. Later Lloyd and Seever found the following identity for all Markov projection: P(fPg) = P(PfPg) ([6 and 7], see also [9]).

This formula may be rewritten as 0 = P((f - Pf)Pg), i.e., if $f_0 \in \ker P$ and $g_0 \in \operatorname{ran} P$, then $f_0g_0 \in \ker P$. This condition is not quite strong enough to characterize the kernel of a Markov projection, so we note a natural property of such projections, namely if $f \ge 0$, then Pf = 0 iff f vanishes on supp P. This is an obvious consequence of the fact that for $x \in X$, p_x is a probability measure. Thus, if P is a

Received by the editors April 24, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A65, 47B55.

Key words and phrases. Markov projection, C(X), averaging operator, positive Borel measure.

686 R. E. ATALLA

Markov projection we have

- $(1) \ker P + \operatorname{ran} P = C(X),$
- (2) $(\operatorname{ran} P)(\ker P) \subset \ker P$,
- (3) $I = \{ f: Pf^2 = 0 \}$ is an ideal in C(X).

(Note that if m is a nonpositive Borel measure with m(e) = 1, and we define P by Pf(x) = m(f) for all $f \in C(X)$, then (1) and (2) hold, but not (3).)

Our main result is

THEOREM. Let X be compact metric, L a proper closed linear subspace of C(X), and $M = \{ f: fL \subset L \}$. If

- (a) L + M = C(X), and
- (b) $I = \{ f: f^2 \in L \}$ is an ideal,

then there exists a Markov projection P on C(X) such that $L = \ker P$ and $\operatorname{ran} P \subset M$.

2. Preliminaries. Throughout, L will be a closed subspace of C(X), the real valued continuous functions on X, and M and I are as defined in the Theorem. In this section we study the structure of I after we give some definitions.

Let $L^{\perp} = \{ m \in C(X)^* : m(f) = 0 \text{ for all } f \in L \}$, and let $(L^{\perp})_1$ be the closed unit ball in L^{\perp} , a compact convex set in the weak*-topology. Note that $f \in L$ iff m(f) = 0 for all $m \in L^{\perp}$ (by Hahn-Banach). Obviously, $f \in M$ iff $f dm \in L^{\perp}$ for all $m \in L^{\perp}$, so $M = \{ f \in C(X) : fL^{\perp} \subset L^{\perp} \}$. Further, $f \in M$ iff f is constant on supp m for each extreme point $m \in (L^{\perp})_1$ [4, pp. 35–36]. We also define $Z(I) = \{ f^{-1}(0) : f \in I \}$ and supp $L^{\perp} = \text{closure} \cup \{ \text{supp } m : m \in L^{\perp} \}$. If $f \in C(X)$ and $A \subset X$, then f_A is the restriction of f to A, and $L_A = \{ f_A : f \in L \}$.

2.1 Remark. $Z(I) \subset \operatorname{supp} L^{\perp}$.

PROOF. If $x \notin \text{supp } L^{\perp}$, then by complete regularity there exists $f \in C(X)$ which vanishes on supp L^{\perp} , but $f(x) \neq 0$. Then $f^{2} \in L$, so $f \in I$ and $x \notin Z(I)$.

- 2.2 Proposition. The following are equivalent:
- (a) I is an ideal,
- (b) $Z(I) = \operatorname{supp} L^{\perp}$.

PROOF. (b) implies (a). We show $f \in I$ iff supp $L^{\perp} \subset f^{-1}(0)$, so that I is the ideal $\{g: \text{ supp } L^{\perp} \subset g^{-1}(0)\}$. If $f \in I$, then (b) implies supp $L^{\perp} \subset f^{-1}(0)$. If supp $L^{\perp} \subset f^{-1}(0)$, then for all $m \in L^{\perp}$, $0 = m(f^2)$, so $f^2 \in L$ and $f \in I$.

(a) implies (b). To show supp $L^{\perp} \subset Z(I)$, let $f \in I$ and $m \in L^{\perp}$. Let $m = m^{+} - m^{-}$ be the Lebesgue decomposition with m^{+} supported by the Baire set A and m^{-} supported by $X \setminus A$. Let $g_n \in C(X)$ with $1 \ge g_n \ge 0$ and $g_n \to 1_A |m|$ -a.e. Now $fg_n \in I$ so $f^2g_n^2 \in L$, and

$$\int f^2 dm^+ = \int f^2 1_A dm = \lim \int f^2 g_n^2 dm = 0$$

since $m \in L^{\perp}$. Likewise $\int f^2 dm^- = 0$, so $f^2 = 0$ |m|-a.e. By continuity, supp $m \subset f^{-1}(0)$, and since m is arbitrary, supp $L^{\perp} \subset f^{-1}(0)$.

2.3 PROPOSITION. If M + L = C(X) and m is an extreme point of $(L^{\perp})_1$, then $m(e) \neq 0$.

PROOF. Let S = supp m. (Since L is proper, $m \neq 0$.) If $f \in M$ then f is constant on S. By hypothesis $C(S) = L_S + M_S$. But then $C(S) = L_S + \text{constants}$, so if $g \in C(S)$ we have g = h + ce with $h \in L_S$ and c constant, whence m(g) = m(h) + cm(e) = 0 + cm(e). If m(e) = 0, then m = 0, which is impossible.

- 2.4 PROPOSITION. If L + M = C(X), then (a) and (b) in 2.2 are equivalent to (c) $I \subset M$.
- PROOF. (b) implies (c). If $f \in I$, then f is constant (in fact, 0) on supp m whenever $m \in L^{\perp}$. Hence, $f \in M$ [4, pp. 35–36].
- (c) implies (b). By 2.1 we always have $Z(I) \subset \operatorname{supp} L^{\perp}$. Conversely, if $f \in I$, then (c) implies f is constant on supp m whenever m is extreme in $(L^{\perp})_1$. But since $f^2 \in L$ as well, $m(f^2) = 0$. Since $m(e) \neq 0$, f^2 must be 0 on supp m. It is an easy consequence of Krein-Milman that sets of the form supp m, with m extreme in $(L^{\perp})_1$, are dense in supp L^{\perp} , so supp $L^{\perp} \subset f^{-1}(0)$.
- 2.5 PROPOSITION. Let $I_0 = \{ f \in C(X) : f \in L \text{ and } f^2 \in L \}$. If I is an ideal, then $I = I_0$, and hence $I \subset L \cap M$, provided L + M = C(X).

PROOF. Clearly, $I_0 \subset I$. If I is an ideal, then $Z(I) = \operatorname{supp} L^{\perp}$, by 2.2, so if $f \in I$, then $0 = m(f) = m(f^2)$ for all $m \in L^{\perp}$, whence $f \in L$ as well as $f^2 \in L$. Thus $f \in I_0$.

- 2.6 REMARK. Propositions 2.2 and 2.4 remain true if I is replaced by I_0 . This fact is not needed below, and we omit the easy proof. In §4 we give some examples on the relation between I and I_0 .
- **3. Proof of Theorem.** (i) Let Z = Z(I). By 2.4, hypotheses (a) and (b) of the Theorem imply $Z = \operatorname{supp} L^{\perp}$. We now prove $I = L \cap M$. By 2.5 we already have $I \subset L \cap M$. Conversely, if $f \in L \cap M$, then f is constant on $\operatorname{supp} m$ for m extreme in $(L^{\perp})_1$, while m(f) = 0 because $f \in L$. Since by 2.3 $m(e) \neq 0$, we have f = 0 on $\operatorname{supp} m$. It follows that $\operatorname{supp} L^{\perp} \subset f^{-1}(0)$, so $f \in I$.
- (ii) Since C(X) = L + M, $I = L \cap M$, and Z = Z(I), we have $C(Z) = L_Z \oplus M_Z$. Thus, there exists a projection Q on C(Z) whose kernel is L_Z and whose range is M_Z . If e_Z is the restriction of e to Z, then clearly $Qe_Z = e_Z$, and it remains to show that $Q \ge 0$ (and then that Q extends to a Markov projection P on C(X)).
- (iii) First we show that because (1) $\operatorname{ran}(Q)\ker(Q) \subset \ker(Q)$ and (2) $\operatorname{ran}(Q)$ is an algebra, we have Q(fQg) = QfQg for all f and g in C(Z).

$$Q(fQg) = Q((f - Qf + Qf)Qg) = Q((f - Qf)Qg + Q(QfQg))$$

= 0 + QfQg.

- (iv) Secondly, if $f \ge 0$ and Qf = 0, then f = 0 on Z. Let $F \in C(X)$ satisfy $F \ge 0$ and $F_Z = f$. Since $f \in L_Z$, there exists $G \in L$ with $G_Z = f$, i.e., $G_Z = F_Z$. If $m \in L^{\perp}$, then supp $m \subset Z$, so m(F) = m(G) = 0, so $F \in L$. Since $F \ge 0$, we have $F^{1/2} \in I \subset M$. Since M is an algebra, $F \in M$, i.e., $F \in L \cap M = I$, so $f = F_Z = 0$.
- (v) Finally, suppose there exists $f \in C(Z)$ with $f \ge 0$, but Qf(x) < 0 for some x. The set $V = \{y : Qf(y) < 0\}$ is open in Z relative to the topology generated by the

688 R. E. ATALLA

subalgebra $M_Z = Q(C(Z))$, which is completely regular, but not Hausdorff. Hence, there exists $g \in M_Z$ such that g(x) = 1, g = 0 off V, and $0 \le g \le 1$. Let h = gf. Then $h \ge 0$, and, by (iii), Qh = Q(gf) = Q((Qg)f) = QgQf = gQf. So Qh(x) = Qf(x) < 0, $Qh \le 0$ on V, and Qh = 0 off V. Let $k = h - Qh \ge 0$. Then Qk = 0, so, by (iv), k = 0 on Z, i.e., h = Qh. But this is impossible since $h(x) \ge 0$ and Qh(x) < 0. (The last three lines were inspired by a homework paper of graduate student Pengyuan Chen.)

- (vi) We now show that Q extends to a Markov projection on C(X). Since X is compact metric (and this is the only time metrizabilty is used) there exists a simultaneous extender, i.e., a positive linear map $E: C(Z) \to C(X)$ such that, for $x \in Z$, f(x) = Ef(x), and also $Ee_Z = e_X = e$. (See the Borsuk-Dugundji theorem in [8, p. 365].) We define P by $Pf(x) = E(Q(f_Z))(x)$. It is easy to check that P is a Markov projection, and we must show that $L = \ker P$ and ran $P \subset M$.
- (vii) To show $L \subset \ker P$, if $f \in L$, then $f_Z \in L_Z$, so $Pf = E(Q(f_Z)) = E(0) = 0$. To show $\ker P \subset L$, suppose $0 = Pf = E(Q(f_Z))$. If $m \in C(X)^*$ and supp $m \subset Z$, let m_Z be m considered as an element of $C(Z)^*$, so for $g \in C(X)$, $m(g) = m_Z(g_Z)$, and for $g \in C(Z)$, $m_Z(g) = m(Eg)$. Then $m \in L^\perp$ iff $m_Z \in (L_Z)^\perp$. Since $L_Z = \ker Q$ and Q is a projection, $(L_Z)^\perp = \operatorname{ran}(Q^*)$, so $m \in L^\perp$ iff $Q^*m_Z = m_Z$. Hence, for all $m \in L^\perp$,

$$m(f) = m_Z(f_Z) = Q * m_Z(f_Z) = m_Z(Q(f_Z)) = m(E(Qf_Z))$$

= $m(Pf) = m(0) = 0$.

It follows that $f \in L$.

- (viii) To show ran $P \subset M$, since $L = \ker P$ and P is a Markov operator, property (2) of the introduction says $(\operatorname{ran} P)L \subset L$.
- **4. Examples.** We assumed metrizability of X only in order to invoke the Borsuk-Dugundji extension theorem. The following rather surprising result shows that the extension theorem is necessary as well as sufficient.
 - 4. 1 Proposition. If X is a compact Hausdorff space, the following are equivalent:
- (a) If Z is a closed subset, there exists a Markov extension operator $E: C(Z) \rightarrow C(X)$.
 - (b) The result of our main theorem holds for C(X).

PROOF. We already know that (a) implies (b). Conversely, suppose (b) holds. If Z is closed in X, let $L = \{f : f_Z = 0\}$ be an ideal. Then I = L, so I is an ideal, and M = C(X), so M + L = C(X). By (b) there exists a Markov projection P with $\ker P = L$. Now ran $P^* = L^\perp = C(Z)^*$, the space of regular Borel measures on Z. That is, if $m \in C(X)^*$ and $\operatorname{supp} m \subset Z$, then $P^*m = m$. We define the extension operator E as follows: if $f \in C(Z)$, let f_1 be any norm-preserving extension of f to an element of C(X), and let $Ef = Pf_1$. To show E is well defined, suppose f_2 is any other extension of f to an element of f to an element of f to an extension operator, i.e., f then f is an extension operator, i.e., f then f is f to f to f to f to show f is an extension operator, i.e., f then f is f to f to f to f to f to f to show f is an extension operator, i.e., f then f is f to f to f to f to f then f is an extension operator, i.e., f then f is f to f to f to f to f then f is f to f the f to f then f to f to f then f to f the f then f to f then f the

REMARK. The extension property fails for $X = \beta N$ and $Z = \beta N \setminus N$ [8, p. 375].

4.2 EXAMPLE. We give an example to show that the hypothesis L + M = C(X) is really needed for Propositions 2.3 and 2.4. Let $X = \{1, 2, 3, 4\}$ with the discrete topology, so that C(X) is essentiallay R^4 . For simplicity we identify $f \in C(X)$ with its values (a, b, c, d). Let

$$L = \{(a, -a, b, b) : a, b \in R\},\$$

so L^{\perp} is the span of the measures whose values at points are (1,1,0,0) and (0,0,1,-1). Now $M = \{(a,a,b,b): a,b \in R\}$ so $M+L \neq C(X)$. $I = I_0 = \{(0,0,a,a): a \in R\}$, which is not an ideal. However, $I \subset M$, so 2.4 fails. Further, $M = (0,0,\frac{1}{2},-\frac{1}{2})$ is an extreme measure in $(L^{\perp})_1$, but M(e) = 0, so 2.3 fails.

We now mention without details some other simple examples we have. (i) L+M=C(X), I_0 is not an ideal, $I\neq I_0$, $I\not\subset M$; (ii) L+M=C(X), I_0 is an ideal, I is not; (iii) $L+M\neq C(X)$, I_0 is an ideal, I is not, and $I\not\subset M$.

5. Remarks. I do not know whether our result is valid in noncommutative C^* -algebras. It is known that for unital JC algebras, the identity P(PaPb) = P(aPb) holds, where multiplication is the Jordan product [10, Lemma 1.1].

From [2] it is clear that contractive projections are more complicated than Markov projections, and it is not generally true that $(\operatorname{ran} P)(\ker P) \subset \ker P$. In fact, if $f \in C_C(X)$ (the complex continuous functions) and m is extreme in $(L^{\perp})_1$, where $L = \ker P$, then on supp m, Pf is a constant times the Radon-Nikodym derivative d|m|/dm. (If P is Markov, then $|m| = \pm m$, so Pf is constant on supp m.) It is an easy consequence of this that $(\operatorname{ran} P)(\operatorname{ran} P)^{-} \subset \operatorname{mult} P$, or, equivalently, the identity $P(Pf(Pg)^{-}Ph) = P(f(Pg)^{-}Ph)$ —the bar stands for complex conjugation. In fact, this is proved for general C^* -algebras in [11, Corollary 3].

Finally, in view of Proposition 4.1, it would be interesting to find characterizations—topological or analytic—of compact spaces for which the extension theorem holds. See [8] for references.

I am grateful to A. Iwanik for pointing out that our result fails if L is not a proper subspace of C(X).

REFERENCES

- 1. G. Birkhoff, *Moyennes de fonctions borneés*, Algèbre et Théorie des Nombres, Colloques Internat. Centre National Recherche Scientifique, no. 24, Paris, France, 1950, pp. 143-153.
- 2. Y. Friedman and B. Russo, Contractive projections on $C_0(K)$, Trans. Amer. Math. Soc. 273 (1982), 57–73.
 - 3. J. Kelley, Averaging projections on $C_{\infty}(X)$, Illinois J. Math. 2 (1958), 214–223.
 - 4. G. Leibowitz, Lectures on complex function algebras, Scott, Foresman, and Co., Glenview, Ill., 1970.
- 5. S. Lloyd, On continuous projections in spaces of continuous functions, Pacific J. Math. 13 (1963), 171-175.
- 6. _____, A mixing condition for extreme left invariant means, Trans. Amer. Math. Soc. 125 (1966), 461-481.
 - 7. G. Seever, Nonnegative projections on $C_0(X)$, Pacific J. Math. 17 (1966), 159–166.
 - 8. Z. Semadeni, Banach spaces of continuous functions, vol. I, PWN, Warsaw, 1971.
 - 9. D. Wulbert, Averaging projections, Illinois J. Math. 13 (1969), 689-693.
- 10. E. Effros and E. Størmer, *Positive projections and Jordan structure in operator algebras*, Math. Scand. **45** (1979), 127–138.
- 11. M. Youngson, Completely contractive projections on C*-algebras, Quart. J. Math. Oxford Ser. (2) 34 (1983), 507-511.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701