
proceedings of the
american mathematical society
Volume 93, Number 4, April 1985

ON THE KERNEL OF A MARKOV PROJECTION ON C( X)

ROBERT E. ATALLA

Abstract. Let Xbe a compact metric space and L a closed linear subspace of C( X),

the real valued continuous functions on X. We give necessary and sufficient

conditions of an algebraic nature for L to be the kernel of a Markov projection P on

C( A"). We also characterize compact spaces for which our result holds as those for

which the Borsuk-Dugundji simultaneous extension theorem holds.

1. Introduction. A projection £ on C( A) is Markov if Pe = e (where e is the unit

function) and £ > 0, i.e., / > 0 implies £/ > 0. If P* is the adjoint of £ and 8X the

Dirac measure at x, let px = P*8X, so that px is a probability measure, and for

/ g C(X) we have £/(x) = jfdpx. Let P be the set of Borel probability measures

on A, a compact convex set in C(X)*, relative to the weak*-topology. Then £*(P) is

a compact convex set, and each extreme point m has the form px for some

x g A—just note thatp*_1(w) is a convex compact subset of P, and hence contains

an extreme point, which is a 8X for some x g A [4, p. 34],

If m is a positive Borel measure, supp m denotes the closed support set of m, and

if m is any Borel measure, supp m is defined as supp \m\. If £ is a Markov projection,

we define supp£ = closureU{suppm: P*m = m). (Note that m g ran£* iff P*m

= m.)

The structure of £ is pretty well known. Birkhoff [1] and Kelley [3] characterized

those £ for which ran £ is an algebra by the following properties: for each x g A, px

is an extreme point of £*(P), and for each/G C(A), £/is constant on supppv.

Moreover, £ satisfies the averaging identity P(fPg) = PfPg. Lloyd [5] showed that if

£ is an arbitrary Markov projection, then £/is constant on supp pv whenever px is an

extreme point of £*(P). It follows easily that the natural restriction of £ to a

projection on C(supp£) satisfies the Birkhoff-Kelley conditions. Later Lloyd and

Seever found the following identity for all Markov projection: P(fPg) = P(PfPg)

([6 and 7], see also [9]).

This formula may be rewritten as 0 = P((f — Pf)Pg), i.e., if /0 g ker£ and

g0 g ran £, then /0g0 g ker £. This condition is not quite strong enough to char-

acterize the kernel of a Markov projection, so we note a natural property of such

projections, namely iff > 0, then £/ = 0 iff/vanishes on supp P. This is an obvious

consequence of the fact that for x g A, px is a probability measure. Thus, if £ is a
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Markov projection we have

(l)ker£ + ran£ = C(X),

(2)(ran£)(ker£)c ker£

(3) 7 = {/: £/2 = 0} is an ideal in C(X).

(Note that if w is a nonpositive Borel measure with m(e) = 1, and we define £ by

Pf(x) = m(f) for all/ g C( X), then (1) and (2) hold, but not (3).)

Our main result is

Theorem. Let X be compact metric, L a proper closed linear subspace of C( A), and

M= {f:fLczL).If
(a)£ + M = C(X),and

(b) 7 = {/:/2 g £} is an ideal,

then there exists a Markov projection P on C( X) such that L = ker £ and ran £ c M.

2. Preliminaries. Throughout, L will be a closed subspace of C( A), the real valued

continuous functions on A, and M and 7 are as defined in the Theorem. In this

section we study the structure of 7 after we give some definitions.

Let L±= {m g C(X)*: m(f) = 0 for all /g £}, and let (L±)x be the closed

unit ball in L1, a compact convex set in the weak*-topology. Note that/g £ iff

m(f) = 0 for all m g Lx (by Hahn-Banach). Obviously, /g M iff /dm g L^ for

all m g L-1, so M = {/g CÍA): /L"1 c L-1}. Further, / g M iff /is constant on

supp m for each extreme point m g (L-1), [4, pp. 35-36], We also define Z(7)

= {/_1(0): /g 7} and supp£x = closure U (supp w: m g £x}. If /g C(A) and

/f c A, then/, is the restriction of/to .4, and LA = {fA:f g £}.

2.1 Remark. Z(7) c supp L-1.

Proof. If x £ supp Lx , then by complete regularity there exists/ g C(X) which

vanishes on supp £x , but/(x) # 0. Then/2 g L, so/ g 7 and x £ Z(7).

2.2 Proposition. The following are equivalent:

(a) 7 « an ideal,

(b)Z(7) = supp£x.

Proof, (b) implies (a). We show / g 7 iff supp £x c /_1(0), so that 7 is the ideal

{g: supp£xc ¿rHO)}. If/g /, then (b) implies suppL1 c /_1(0). If supp£±c

/"'(O), then for all m g Lx,0 = m(f2),sof2 g Land/g 7.

(a) implies (b). To show supp£x c Z(7), let/ g 7 and m g £-"-. Let m = m + — m~

be the Lebesgue decomposition with m+ supported by the Baire set A and m~

supported by A\,4. Let g„ g C(X) with 1 > g„ > 0 and g„ -» 1^ |w|-a.e. Now

/g„G/so/2g2G£,and

//2 ¿m + = ff2XA dm = lim ff2g2 dm = 0

since w g £-■-. Likewise ff2dm~=0, so /2 = 0 |m|-a.e. By continuity, supp w c

/_1(0), and since m is arbitrary, supp£x c/"'(0).

2.3 Proposition. If M + L = C( A) and m is an extreme point of (L±)x, then

m(e) * 0.
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Proof. Let 5 = supp m. (Since £ is proper, m =fc 0.) If/ g M then/is constant on

S. By hypothesis C(S)=LS+ Ms. But then C(S) = Ls + constants, so if g g C(S)

we have g = h + ce with h g Ls and c constant, whence m(g) = m(h) + cm(e) = 0

+ cm(e). If m(e) = 0, then m = 0, which is impossible.

2.4 Proposition. 7/£ + M = C(X), then (a) and(b) in 2.2 are equivalent to

(c) I cM.

Proof, (b) implies (c). If / g 7, then/is constant (in fact, 0) on supp m whenever

m g L1. Hence,/g M[4, pp. 35-36].

(c) implies (b). By 2.1 we always have Z(7) c supp £± . Conversely, if / g 7, then

(c) implies/is constant on supp m whenever m is extreme in (L1)x. But since/2 g L

as well, m(f2) = 0. Since m(e) # 0, f2 must be 0 on suppra. It is an easy

consequence of Krein-Milman that sets of the form supp m, with m extreme in

(L±)x, are dense in suppL-1, so supp£x c/_1(0).

2.5 Proposition. Let I0= {/ g C( A): / g £ and f2 g £}. If I is an ideal, then

I = I0, and hence I c £ n M, provided L + M = C( X).

Proof. Clearly, 70 c 7. If 7 is an ideal, then Z(I) = supp £x , by 2.2, so if / g /,

then 0 = m(f) = m(f2) for all m g L1-, whence / g L as well as /2 g £. Thus

/e/„.

2.6 Remark. Propositions 2.2 and 2.4 remain true if 7 is replaced by /0. This fact

is not needed below, and we omit the easy proof. In §4 we give some examples on

the relation between 7 and 70.

3. Proof of Theorem, (i) Let Z = Z(I). By 2.4, hypotheses (a) and (b) of the

Theorem imply Z = supp£x. We now prove 7 = L n M. By 2.5 we already have

7 c L n M. Conversely, if / g L n M, then / is constant on supp m for m extreme

in (Lx)x, while ra(/) = 0 because/g £. Since by 2.3 m(e) ¥= 0, we have/= 0 on

supp m. It follows that supp L^ c /_1(0), so/ g 7.

(ii) Since C(X) = L + M, I = L n M, and Z = Z(7), we have C(Z) = £z © Afz.

Thus, there exists a projection g on C(Z) whose kernel is Lz and whose range is

Mz. If ez is the restriction of e to Z, then clearly Qez = ez, and it remains to show

that Q > 0 (and then that Q extends to a Markov projection £ on C( A)).

(iii) First we show that because (1) ran(Q)ker(Q) C ker(<2) and (2) ran(Q) is an

algebra, we have Q(fQg) = QfQg for all/and g in C(Z).

QVQg) = e((/- 2/+ fine*) = e((/- ßf)ßg + e(öfßs))
= 0 + QfQg.

(iv) Secondly, if / > 0 and ß/ = 0, then/ = 0 on Z. Let £ g C( A) satisfy £ 3* 0

and £z = /. Since / g Lz, there exists G g L with Gz = /, i.e., C7Z = £z. If

m g £x , then supp m c Z, so m(F) = m(G) = 0, so £ g £. Since £ > 0, we have

£^2 g 7 c M. Since M is an algebra, £ g M, i.e., £ g £ n M = 7, so/ = £z = 0.

(v) Finally, suppose there exists/g C(Z) with/^ 0, but Qf(x) < 0 for some x.

The set F = {y: Qf(y) < 0} is open in Z relative to the topology generated by the
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subalgebra Mz = Q(C(Z)), which is completely regular, but not Hausdorff. Hence,

there exists g g Mz such that g(x) = 1, g = 0 off V, and 0 < g < 1. Let h = gf.

Then h > 0, and, by (iii), Qh = Q(gf) = Q((Qg)f) = QgQf = gQf. So Qh(x) =
Qf(x) < 0, Qh < 0 on V, and Qh = 0 off V. Let k = h - Qh > 0. Then Qk = 0, so,
by (iv), k = 0 on Z, i.e., A = Qh. But this is impossible since h(x) > 0 and

Qh(x) < 0. (The last three lines were inspired by a homework paper of graduate

student Pengyuan Chen.)

(vi) We now show that Q extends to a Markov projection on C(A). Since X is

compact metric (and this is the only time metrizabilty is used) there exists a

simultaneous extender, i.e., a positive linear map £: C(Z) -> C(A) such that, for

x g Z,f(x) = £/(x), and also Eez = ex= e. (See the Borsuk-Dugundji theorem in

[8, p. 365].) We define £ by £/(x) = £(ß(/z))(x). It is easy to check that £ is a

Markov projection, and we must show that L = ker £ and ran P c M.

(vii) To show £ c ker£, if / g £, then fz g £z, so £/ = E(Q(fzy) = £(0) = 0.

To show ker £ c £, suppose 0 = £/ = E(Q(fz)). If m g C( A)* and supp m c Z,

let w?z be m considered as an element of C(Z)*, so for g g C( A), w(g) = mz(gz),

and for g G C(Z), mz(g) = m(Eg). Then m g £x iff wz g (£z)x . Since Lz =

kerQ and (? is a projection, (£z)x = ran(Q*), so m g £x iff Ç>*mz = mz. Hence,

for all m g £x ,

m{f) = mz(fz) = Q*mz(fz) = mz(Q(fz)) = m{E(Qfz))

= m(Pf) = m(0) = 0.

It follows that/ g £.

(viii) To show ran £ c A7, since £ = ker £ and £ is a Markov operator, property

(2) of the introduction says (ran £)£ c L.

4. Examples. We assumed metrizability of A only in order to invoke the Borsuk-

Dugundji extension theorem. The following rather surprising result shows that the

extension theorem is necessary as well as sufficient.

4. 1 Proposition. If X is a compact Hausdorff space, the following are equivalent:

(a) If Z is a closed subset, there exists a Markov extension operator E: C(Z) —*

C(X).

(b) The result of our main theorem holds for C(X).

Proof. We already know that (a) implies (b). Conversely, suppose (b) holds. If Z

is closed in A, let L = {/: fz = 0} be an ideal. Then 7 = L, so 7 is an ideal, and

M = C(A), so M + L = C(X). By (b) there exists a Markov projection £ with

ker £ = L. Now ran £* = £x= C(Z)*, the space of regular Borel measures on Z.

That is, if m G C( A)* and supp m c Z, then P*m = m. We define the extension

operator £ as follows: if / g C(Z), let/, be any norm-preserving extension of/to an

element of C(A), and let £/= £/,. To show £ is well defined, suppose/2 is any

other extension of / to an element of C(A). If x g A, then supppx c Z, so

Pfx(x) = Tfi(x) = ffdpx- To show £ is an extension operator, i.e., (Ef)z = f, let

x g Z. Then P*8X = 8X, so £/(x) = £/,(x) = P*8x(fx) = /,(x) = f(x). This com-

pletes the proof.

Remark. The extension property fails for A = ßN and Z = ßN \ N [8, p. 375].
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4.2 Example. We give an example to show that the hypothesis L + M = C( X) is

really needed for Propositions 2.3 and 2.4. Let X= {1,2,3,4} with the discrete

topology, so that C( A) is essentiallay A4. For simplicity we identify/ g C(A) with

its values (a, b, c,d). Let

£= {(a,-a,b,b):a, b g £},

so Lx  is the span of the measures whose values at points are (1,1,0,0) and

(0,0,1,-1).   Now   M = {(a, a, b, b):   a,b^R)   so   M + L * C(X).   7 = 70 =

{(0,0, a, a): a g £}, which is not an ideal. However, 7 c M, so 2.4 fails. Further,

m = (0,0, i, - \) is an extreme measure in (£x)!, but m(e) = 0, so 2.3 fails.

We now mention without details some other simple examples we have, (i)

L + M = C(X), I0 is not an ideal, 7 ¥= 70, 7 <t M; (ii) L + M = C(X), 70 is an

ideal, 7 is not; (iii) L + M ¥= C( A), 70 is an ideal, 7 is not, and 7 <zt M.

5. Remarks. I do not know whether our result is valid in noncommutative

C*-algebras. It is known that for unital JC algebras, the identity P(PaPb) = P(aPb)

holds, where multiplication is the Jordan product [10, Lemma 1.1].

From [2] it is clear that contractive projections are more complicated than Markov

projections, and it is not generally true that (ran £)(ker£) c ker£. In fact, if

/g Cc(A) (the complex continuous functions) and m is extreme in (£x),, where

L = ker£, then on suppw, £/ is a constant times the Radon-Nikodym derivative

d\m\/dm. (If £ is Markov, then \m\ = ±m, so £/is constant on suppw.) It is an

easy consequence of this that (ran £)(ran £)"c mult £, or, equivalently, the identity

P(Pf(Pg)~Ph) = P(f(Pg)~Ph)—the bar stands for complex conjugation. In fact,

this is proved for general C*-algebras in [11, Corollary 3],

Finally, in view of Proposition 4.1, it would be interesting to find characterizations

— topological or analytic—of compact spaces for which the extension theorem

holds. See [8] for references.

I am grateful to A. Iwanik for pointing out that our result fails if £ is not a proper

subspace of C(A).
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