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ISOMETRIES OF THE DISC ALGEBRA

MOHAMAD EL-GEBEILY AND JOHN WOLFE

ABSTRACT. The linear isometries u: A —> A of the disc algebra A into itself

are completely described. Such isometries u must be one of two distinct types.

The first type is uf = tp • /(</>), where t/> £ A and <f> G H°° satisfy certain

described conditions. The second type is uf = E(ij>- f(d>)), where <j>: Q —> T is

any continuous function from a closed zero measure subset Q of the unit circle

T onto itself, î/> G C(Q) is unimodular, and E: Y —► A is a norm 1 extension

operator, where y = {tp ■ f((/>): f G A} C C(Q). Isometries of C(if) spaces

into the disc algebra are also described.

1. Introduction. A linear operator u: X —> X on a Banach space A is an

isometry if ||ui|| = ||x|| for each x G X. The isometries of most of the well-known

Banach spaces have been described. The isometries of C(K) spaces were described

by Banach and Stone (onto case) and Holsztynski [12] (into case). Isometries of

Lp(p) spaces and 77p were worked out by Lamperti [16] and Forelli [9], respectively.

The onto isometries of the disc algebra A and 77°° were determined by de Leeuw,

Rudin, and Wermer [17]. Several further papers dealing with isometries on various

spaces are listed in the bibliography. In this paper we describe the isometries of the

disc algebra A into itself. This answers a question raised by Phelps [30, p. 354].

Our notation follows Rudin [26] and Hoffman [11]. We use D for the open unit

disc in the complex plane, D = {z: \z\ < 1}, and T = {z: \z\ = 1}. We use C(T),

C(D), and C(K) to denote the sup norm Banach spaces of continuous complex

valued functions on T, D, or a general compact Hausdorff space K, respectively.

The disc algebra A = {/ G C(D): f is analytic on D}, and 77°° is the sup norm

Banach space of bounded analytic functions on D. Lebesgue measure on T is

denoted by m. We identify A in its natural way as a subspace of C(T).

We begin by discussing Propositions 1 and 2 which describe two types of isome-

tries of the disc algebra into itself. The main result (Theorem A) is that any isom-

etry on A must be of the form described in either Propositions 1 or 2. Theorem B

describes the isometries of C(K) spaces into A.

These results are proved in §2. §3 contains a few further remarks and open

questions.

PROPOSITION 1. Suppose 4> G 77°° and \\4>\\ < 1, where ai =¡ hy/h2 with hx, h2 G

A. Let S = {teT: h2(t) = 0}. Suppose tp G A and tjj(s) = 0 for s G S.

(a) Then uf = tp ■ /(</>) defines a bounded linear operator from A into A.

(b) The operator u is an isometry ■& \\4>\\ = \\tp\\ = 1, and there is a closed set

Q in T such that Q D S =0, <f)(Q) = T and \tj)(q)\ = 1 for all qGQ.

An isometry u: A —> A of the form described in Proposition 1(b) will be called

a Type X isometry on A.
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McDonald [33, Proposition 1.1] shows that isometries as in part (b) are precisely

the ones satisfying (ul)u(fg) = (uf)(ug).

Type 1 isometries are quite natural and expected in this situation, since for many

function spaces X (e.g., on 77p or Lp) all isometries are of the form uf = tp ■ f((p),

where the conditions on tp and tp depend on the nature of A.

A wide variety of allowable functions tp and tp, for which uf = tp ■ f(4>) is an

isometry of A, can be imagined. For example, if ¡px G A is a "Riemann map" of D

to the quarter annulus {z: 1/2 < z < X and 0 < arg 2 < 7r/2}, then some proper arc

Q of T is mapped onto {z: \z\ = 1 and 0 < arg z < n/2}. Thus uf = tpf(tp) is an

isometry, where tp = (</>i)4 and tp G A is any norm 1 function which is unimodular

on Q.
We also note that <p G 77°° is of the form tp = hx/h2, where h\,h2 G A <t> the

radial limit of (p is continuous off some closed subset of T with measure zero.

The next proposition is trivial.

PROPOSITION 2. Let Q be a closed subset ofT of measure zero, let tp: Q —> T

be any continuous onto map, and let tp G C(Q) satisfy \tp(q)\ = X for each q G Q.

Define the subspace Y of C(Q) by Y = {tp ■ /(</>): / G A}. Let E:Y -> A be a
linear extension operator with ||7i|| = 1, i.e., E is a bounded linear operator of norm

X such that, for each f G Y and q G Q, E(f)(q) = f(q). Then uf = E(tp ■ f(qP))
defines an isometry of A into A.

An isometry u: A —> A of the form described in Proposition 2 will be called a

Type 2 isometry on A.

We are now in a position to state our main result.

THEOREM A. Any isometry of A is either of Type X or of Type 2, i.e., of the

form described in either Proposition X or Proposition 2.

One reason for the existence of what we have called Type 2 isometries on A is

that A contains isometric copies of C(T) (see Pelczynski [21]). This second type of

isometry previously appeared (in the context of Banach spaces of the type C(K). K

a compact Hausdorff space) in Holsztynski [12] (see also Proposition 1 of Pelczynski

[23]).
In order to illuminate the nature of Type 2 isometries, we make the following

observations.

We note that for any closed subset Q of T of measure zero there are many norm

1 extension operators E: C(Q) —> A as shown by Pelczynski [21] and Michael and

Pelczynski [18] (also see Rudin [25], Carleson [6], and Bishop [4]).

We also note that if Q C T has measure zero then there exist continuous maps

<p: Q —> T of Q onto T <$ Q is uncountable (e.g., Q is a homeomorph of the Cantor

set). This argument goes as follows: (1) m(Q) = 0 implies Q is totally disconnected

(it cannot contain intervals); (2) Q uncountable implies that it contains a homeo-

morph of the Cantor set which must be a retract of Q; (3) there are well-known

maps of the Cantor set onto T.

Thus we see that Type 2 isometries exist in profusion. Unfortunately, it seems

that Type 2 isometries can never be described very explicitly, since, firstly, the

maps <p: Q —> T, in the few cases in which they are explicit, are rather ugly, and,

secondly, the extension operators E : C(Q) —» A, which are constructed by Michael

and Pelczynski using a limiting process, always seem to be illusive.
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Our final result describes the isometries of a C(K) space into A.

THEOREM B. Let K be a compact metric space, and let u: C(K) —» A be an

isometry. Then u is Type 2. More precisely, uf = E(tp ■ f(<j>)), where Q is a closed

subset ofT of measure zero, <p: Q —> K is continuous and onto, tp G C(Q) satisfies

'^(q) = 1 for aM Q G Q> and E:Y^>Aisa norm X extension operator, where

Y = {tP-f(<P):fGC(K)}.

2. Proof of the results. Our basic tool for proving Theorems A and B is the

following proposition.

PROPOSITION 3. Let u: A —> A be an isometry. Then there exist a closed

subset QofT,a continuous map p: Q —> T, and a continuous onto map <p: Q —► T

such that p(q)u(g)(q) = g((p(q)) for all g G A and q G Q.

We identify A* as a quotient space of M(T), where M(T) = C(T)* denotes

the space of regular Borel measures on T. The notation B(A*), B(C(T)*), and

ext B(A*) and ext B(C(T)*) denote, respectively, the unit balls and extreme points

of the unit balls of A" and C(T)* = M(T). For t G T, 6t G A* denotes the point

evaluation. Since t —» St is a homeomorphism of T into A* equipped with the weak*

topology, we identify T with the subset {6t : t G T} of A*.

The following proof is a straightforward adaptation of Pelczynski's proof [23,

Proposition 1] of a result of Holsztynski [12] on isometries of C(K) spaces.

PROOF OF PROPOSITION 3. We first establish that for each t G T the set Kt ^

0, where Kt = ((u*)-l6t)nextB(A*). First of all, Kt = ((u*)-1^) n B(A") ¿0

because u is an isometry and, thus, u*(B(A*)) = B(A*). But Kt (using the

terminology of §V.8 of Dunford and Schwartz [7]) is a weak* compact extremal

subset of B(A*), so it has extreme points which will also be extreme points of

B(A"), which shows that Kt ¿ 0.

Now for each A G T let Qx = (u^'^XT)) n T and let Q = \JXeTQx. Define

p: Q -> T by p(q) = A"1 if q G Qx, and define <p: Q -► T by 4>(q) = p(q)u*(èq).
The last paragraph shows that <j> maps Q onto T (since ext£?(A*) = {aSt: t G

T, \a\ — 1}). Also, by definition, for q G Q and g G A,

P{q){ug)(g) = p(q)(u*(Sq))g = 64,fq)g = g(<p(q))-

To see that Q is closed and p is continuous, let F be a closed subset of T. Then

p~i(F)= U.9a-*= [j^-^X-^nT)
xef xeF

= lu*'1 I (J A-XTJ ) DT=(u*-1(F^1 xT))DT

is weak* closed since

F~l xT= {A^1^ XgF, tGT)

is closed and u* is weak* continuous.   Then p is continuous and Q = p~x(T) is

closed. This proves Proposition 3.

PROOF OF PROPOSITION 1. To see uf = tp ■ f(tp) is bounded from A to A

observe that, for / G A,uf is analytic on D and, for z G D, |u/(z)| < H^H ||/||, so u

is bounded from A into 77°°. To get u(A) c A we need u(zn) G A for each n > X.
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But uzn — tphn/h2, and for t G T\S this is certainly continuous. If to G S then

lim |(uzn)(*)| < lim M*)|.ES |0"(i)| = 0,
t—>to t—*to *—*ro

since <p G H°° and tp(to) = 0. This proves (a).

For (b) we first note that, since Q n S = 0, although 0 G 77°°, its radial limit is

continuous on T — S so that (p(Q) makes sense. The proof that a Type 1 operator

is an isometry is straightforward. Conversely, if uf = tp ■ /(</>) is an isometry, then

the set Q is obtained from Proposition 3. Taking g in Proposition 3 to be 1 gives

\tp(q)\ = |p(<?)-1| = 1 for q G Q (hence, Q n S is void). Taking g to be z gives the

desired conclusion <p(Q) = T, and the rest of the proof is apparent.

PROOF OF THEOREM A. Given the isometry u: A -+ A let Q,p: Q -> T and

<p: Q —» T be as given in Proposition 3, i.e., for q G Q, p(q)(uf)(q) = f(<p(q))- We

will show that if m(Q) > 0 then u is a Type 1 isometry, and if m(Q) = 0 then u is

a Type 2 isometry.

So first assume m(Q) > 0. The proof of this case is similar to the proof of

Theorem 1.1 of McDonald [33].

Letting / = 1 we get, for q G Q, p(q)(uX)q = X or uX = 1/p on Q. Thus,

(1) uf(q) = (uX)(q)f(4>(q))    for / G A and q G Q.

Next we establish

(2) (uX)(u(fg)) = (uf)(ug)    for f,g G A.

For from (1), for q G Q,

(uX)(q)u(fg)(q) = (uX(q))2f(<P(q))g(<P(q)) = (uf)(q)(ug)(q).

Thus, (2) holds on Q. But m(Q) > 0 and the functions involved are in A, so (2)

holds on D.

It follows immediately from (2) that

(3) (ul)"-1«^") = (uz)n    for n > 1.

Now define <£i(£) = uz(0/u^(0-   We now show that (px is analytic on D and

llalli = 1.
Suppose uX has a zero of order n > X at £o G D, i.e., lim£_£0[(ul)(£)/(£ — £o)n]

exits. So by (3),

[«c*)(o/(É - Cor-1]" = [ui(o/(í - c:orr w^ko-
But m(2")(^o) = 0 since, by (2),

0=(ul)(Co)u(z2nMo) = \(uznMo)}2-

Thus lim£_£0[ii(z)(£)/(£ — £o)ra_1] = 0, and uz has a zero of order at least n at

£o, so <£i is analytic on D.

To get 11011| < 1 note that, by (3), (uzn) = (ul)(O0?(O- Thus> if ul(0 ^ °'
then

|^i(0r<ll^nll/l«l(0l<l/l«l(0l    for all n.
Thus, |0i(OI ^ 1- Since the zeros of the id are isolated, we get ||<pi|| < 1. That

11011| = 1 will be noted later.
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Finally, putting f = z in (X) we get, for q G Q, (uz)(q) = (ul)(q)(p(q). Thus

0 = 0i on Q. This implies ||0i|| = 1. It also implies from (1) that, for / G A,

uf — (ul)/(0i) holds on Q. Again since these functions are in 77°°, uf = (uX)f(<p\)

holds on D, so u is a Type 1 operator.

This finishes the case where m(Q) > 0. Now assume m(Q) = 0, and we will

show that u is a Type 2 isometry. This falls immediately out of Proposition 3. Let

Q,p: Q —+ T and 0: Q —► T be as given in Proposition 3. Then

(4) P(q)u(f)(q) = /(0(?))    for/GAandQGQ.

Let 0 = p_1. We must show that uf = E(tp ■ f((p)), where E: Y —> A is an

extension operator on Y — {tp ■ f((p) : f G A}. We simply define the operator E on

Y by E(tp ■ f((p)) = uf. Then (4) shows that E is an extension operator, and this

finishes the proof of Theorem A.

PROOF OF THEOREM B. The construction of Q C T, <p: Q -> K, and 0 G

C(Q) is the same argument as Proposition 3. It only remains to show that m(Q) =

0. We suppose m(Q) > 0 and get a contradiction. First we show that if A is a

closed subset of Q with m(F) > 0 then 0(F) = K. For if k0 G K and k0 £ 0(F),
we can choose / G C(7Í) such that / = 1 on <p(F) and /(fco) = 0. Then ul and uf

are identical on F, which is impossible since m(F) > 0.

Now fix fco G Tí. Then m(0~1(fco)) = 0. So there is an open subset U of T

with 0_1(fco) C U and m(U) < m(Q)/2. But, letting F = Q\U, m(F) > 0, and
0(F) ^ K since fco ̂  0(F). This contradiction shows that m(Q) = 0 and Theorem

B is proved.

3. Some further remarks. We remarked earlier that one reason for additional

isometries on A, besides the natural Type 1 isometries, is that the disc algebra

contains subspaces isometric to C(T) which naturally contains A. However, not all

Type 2 isometries are restrictions to A of isometries of C(T), as illustrated by the

following example (which appears in Rochberg [31]).

EXAMPLE. Let Q be a closed subset of T which is homeomorphic to the Cantor

set and has Lebesgue measure 0. Let 0 be a continuous map of Q onto T. By

Rudin's Theorem [25] there are functions 0i and 02 in A such that 0i = 02 = <p

on Q, but 0i t^ 02 and ||0i|| = ||02|| = 1. Now define u: A —* A by uf =

i(/o0i+/o02).

It is not difficult to check that u is an isometry which is not Type 1, so it must

be Type 2. But there can be no isometry w: C(T) —> A such that w = u on A,

since then w(X) = u(X) = 1, and this is impossible (the argument here is exactly

that used in the proof of Example 9.1 in Michael and Pelczynski [18]).

We close with a related problem about isometries which seems to be open.

Problem. Describe the isometries of 77°° into itself.
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