A DIOPHANTINE PROBLEM FOR LAURENT POLYNOMIAL RINGS

PETER PAPPAS

> ABSTRACT. Let R be an integral domain of characteristic zero. We prove that the diophantine problem for the Laurent polynomial ring $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$ is unsolvable. Under suitable conditions on R we then show that either \mathbf{Z} or $\mathbf{Z}[i]$ is diophantine over $R\left[T, T^{-1}\right]$.

1. Introduction. Let R be a commutative ring with identity and let S be a fixed recursive subring of R, i.e. there exists a bijective map $\theta: \mathbf{N} \rightarrow S$ such that the pre-images of the ring operations are recursive in \mathbf{N} (see, e.g., Rabin [5]). The diophantine problem for R with coefficients in S is said to be unsolvable (solvable) if there exists no (an) algorithm to decide whether or not a diophantine equation in several variables with coefficients in S has a solution in R. The diophantine problem for the complex function field $\mathbf{C}(T)$ with coefficients in $\mathbf{Z}[T]$ is very much an open question. Related results are as follows:

Theorem A (Denef [3]). Let R be an integral domain of characteristic zero. Then the diophantine problem for $R[T]$ with coefficients in $\mathbf{Z}[T]$ is unsolvable.

Theorem B (Denef [3]). Let K be a formally real field. Then the diophantine problem for $K(T)$ with coefficients in $\mathbf{Z}[T]$ is unsolvable.

Now let R be an integral domain of characteristic zero with quotient field F. The smallest ring containing R in which T is invertible is the Laurent polynomial ring $R\left[T, T^{-1}\right] \subset F(T)$.

Our main theorem is the following:
Theorem. Let R be an integral domain of characteristic zero. Then the diophantine problem for $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$ is unsolvable.

In light of Theorem A our result is not surprising; in fact, our proof follows the same route. However, there is an interesting difference. We need to consider two cases, namely $\sqrt{-1} \notin R$ and $\sqrt{-1} \in R$.

To handle the first case we use the well-known result of M. Davis, Yu. Matijasevic, H. Putnam and J. Robinson (see, e.g., [1]) that Hilbert's tenth problem is unsolvable, and for the second case we rely on a result of Denef which states that the diophantine problem for the ring of Gaussian integers $\mathbf{Z}[i]$ with coefficients in \mathbf{Z} is unsolvable (see [2] or his generalization in [4]).

Received by the editors March 30, 1984.
1980 Mathematics Subject Classification. Primary 03B25, 10N05.
Key words and phrases. Diophantine problems, unsolvable problems, Hilbert's tenth problem.
2. The solution. We shall stay with the notation from [3] and begin by setting up some general terminology. Let $D\left(x_{1}, \ldots, x_{n}\right)$ be a relation on $R\left[T, T^{-1}\right]$. We say that $D\left(x_{1}, \ldots, x_{n}\right)$ is diophantine over $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$ if there exists a diophantine equation $P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ over $\mathbf{Z}[T]$ such that, for all x_{1}, \ldots, x_{n} $\in R\left[T, T^{-1}\right]$:

$$
D\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \exists y_{1}, \ldots, y_{m} \in R\left[T, T^{-1}\right]: P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0
$$

We note that if D_{1} and D_{2} are diophantine over $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$, then so are $D_{1} \vee D_{2}$ and $D_{1} \wedge D_{2}$. Indeed, $P_{1}=0 \vee P_{2}=0 \leftrightarrow P_{1} P_{2}=0$ and $P_{1}=0 \wedge P_{2}=0 \leftrightarrow P_{1}^{2}+T P_{2}^{2}=0$.

Consider the Pell equation

$$
\begin{equation*}
X^{2}-\left(T^{2}-1\right) Y^{2}=1 \tag{1}
\end{equation*}
$$

and let U be an element in the algebraic closure of $R\left[T, T^{-1}\right]$ satisfying

$$
\begin{equation*}
U^{2}=T^{2}-1 \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
(X+U Y)(X-U Y)=1 \tag{3}
\end{equation*}
$$

Let $X, Y \in R\left[T, T^{-1}\right]$ satisfy (1). As an algebraic function of $T, X+U Y$ can be written in the form

$$
g(T) / T^{r}+\sqrt{T^{2}-1} f(T) / T^{s}
$$

with $g(T), f(T) \in R[T]$ and $r, s \in \mathbf{N}$. We next parametrize the curve (2) by

$$
T=t^{2}+1 / t^{2}-1, \quad U=2 t / t^{2}-1
$$

As rational functions of t, it is easily seen that $X+U Y$ and $X-U Y$ have poles only at $t= \pm 1, \pm i$. Furthermore, (3) implies that they have zeros only at $t= \pm 1, \pm i$.

Now observe that $(X+U Y)(-t)=(X-U Y)(t)$ and so we conclude that if $X, Y \in R\left[T, T^{-1}\right]$ is a solution of (1), then

$$
X+U Y=c\left(\frac{t-1}{t+1}\right)^{m}\left(\frac{t-i}{t+i}\right)^{n}, \quad X-U Y=c\left(\frac{t-1}{t+1}\right)^{-m}\left(\frac{t-i}{t+i}\right)^{-n}
$$

for some $c \in R$ and some $m, n \in \mathbf{Z}$. Substituting these two expressions into (3) yields $c^{2}=1$.

Let us now consider $X+U Y$ as an algebraic function of T and suppose for the moment that $c=1$. (The case $c=-1$ is entirely similar to this one.) We have

$$
\begin{aligned}
X+U Y & =\left(\frac{t-1}{t+1}\right)^{m}\left(\frac{t-i}{t+i}\right)^{n} \\
& =(T+U)^{m}\left(\frac{t^{2}-1}{t^{2}+1}-i \frac{2 t}{t^{2}+1}\right)^{n}=(T+U)^{m}\left(\frac{1-i U}{T}\right)^{n}
\end{aligned}
$$

From (2),

$$
(T-U)^{-m}=(T+U)^{m} \quad \text { and } \quad\left(\frac{1-i U}{T}\right)^{-n}=\left(\frac{1+i U}{T}\right)^{n}
$$

and therefore we may rewrite $X+U Y$ and $X-U Y$ as expressions involving only positive integral exponents.

Thus if $(X, Y) \in R\left[T, T^{-1}\right] \times R\left[T, T^{-1}\right]$ is a solution to (1), we have one of four possible outcomes, namely

$$
\begin{aligned}
& X+U Y=(T+U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \\
& X-U Y=(T-U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \\
& X+U Y=(T+U)^{m}\left(\frac{1+i U}{T}\right)^{n}, \\
& X-U Y=(T-U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \\
& \text { some }(m, n) \in \mathbf{N} \times \mathbf{N} ; \\
& X+U Y=(T-U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \\
& X-U Y+(T+U)^{m}\left(\frac{1+i U}{T}\right)^{n}, \\
& X+U Y=(T-U)^{m}\left(\frac{1+i U}{T}\right)^{n}, \\
& X-U Y=(T+U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \\
& \text { some }(m, n) \in \mathbf{N} \times \mathbf{N} ; \\
& X
\end{aligned} \quad \text { some }(m, n) \in \mathbf{N} \times \mathbf{N} .
$$

Now let S denote the ring $\mathbf{Z}[i]\left[T, T^{-1}\right]$. By (2), $S[U]$ defines a quadratic ring extension of S. For each $j=1,2,3,4$ define two sequences $X_{(m, n)}^{(j)}, Y_{(m, n)}^{(j)},(m, n) \in$ $\mathbf{N} \times \mathbf{N}$, of elements of S by

$$
\begin{align*}
& X_{(m, n)}^{(1)}+U Y_{(m, n)}^{(1)}=(T+U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \tag{4}\\
& X_{(m, n)}^{(2)}+U Y_{(m, n)}^{(2)}=(T+U)^{m}\left(\frac{1+i U}{T}\right)^{n}, \tag{5}\\
& X_{(m, n)}^{(2)}+U Y_{(m, n)}^{(3)}=(T-U)^{m}\left(\frac{1-i U}{T}\right)^{n}, \tag{6}\\
& X_{(m, n)}^{(4)}+U Y_{(m, n)}^{(4)}=(T-U)^{m}\left(\frac{1+i U}{T}\right)^{n} . \tag{7}
\end{align*}
$$

Applying the ring automorphism $S[U] \rightarrow S[U]$, which fixes S elementwise and sends U to $-U$, together with (2) yields

$$
\begin{aligned}
& X_{(m, n)}^{(1)}-U Y_{(m, n)}^{(1)}=(T-U)^{m}\left(\frac{1+i U}{T}\right)^{n}=(T+U)^{-m}\left(\frac{1-i U}{T}\right)^{-n}, \\
& X_{(m, n)}^{(2)}-U Y_{(m, n)}^{(2)}=(T-U)^{m}\left(\frac{1-i U}{T}\right)^{n}=(T+U)^{-m}\left(\frac{1-i U}{T}\right)^{-n}, \\
& X_{(m, n)}^{(3)}-U Y_{(m, n)}^{(3)}=(T+U)^{m}\left(\frac{1+i U}{T}\right)^{n}=(T-U)^{-m}\left(\frac{1-i U}{T}\right)^{-n}, \\
& X_{(m, n)}^{(4)}-U Y_{(m, n)}^{(4)}=(T+U)^{m}\left(\frac{1-i U}{T}\right)^{n}=(T-U)^{-m}\left(\frac{1+i U}{T}\right)^{-n},
\end{aligned}
$$

and hence, for every $(m, n) \in \mathbf{N} \times \mathbf{N}$ and each $j=1,2,3,4$, the pair $\left(X_{(m, n)}^{(j)}\right.$, $\left.Y_{(m, n)}^{(j)}\right) \in \mathbf{S} \times \mathbf{S}$ is a solution to (1).

Lemma 1. (a) If $i \in R$, then the solutions of (1) in $R\left[T, T^{-1}\right]$ are of the form

$$
\left(X_{(m, n)}^{(j)}, Y_{(m, n)}^{(j)}\right), \quad(m, n) \in \mathbf{N} \times \mathbf{N}, j=1,2,3,4 .
$$

(b) If $i \notin R$, then the solutions of (1) in $R\left[T, T^{-1}\right]$ are of the form

$$
\left(X_{(m .0)}^{(j)}, Y_{(m .0)}^{(j)}\right), \quad m \in \mathbf{N}, j=1,2,3,4 .
$$

Proof. By the foregoing discussion, it remains only to show that if $i \notin R$, then for every $(m, n) \in \mathbf{N} \times \mathbf{N}^{>0}$ and $j=1,2,3,4$,

$$
\left(X_{(m, n)}^{(j)}, Y_{(m, n)}^{(j)}\right) \notin R\left[T, T^{-1}\right] \times R\left[T, T^{-1}\right] .
$$

Fix $x=X_{(m, n)}^{(j)}, y=Y_{(m, n)}^{(j)}$ for some $(m, n) \in \mathbf{N} \times \mathbf{N}^{>0}, j \in\{1,2,3,4\}$, and assume $(x, y) \in R\left[T, T^{-1}\right] \times R\left[T, T^{-1}\right]$. Let $\sigma: S[U] \rightarrow S[U]$ be the ring automorphism which fixes T and U and sends i to $-i$. Then $\sigma(x+U y)=x+U y$, which by (4)-(7) implies

$$
\left(\frac{1+i U}{T}\right)^{n}=\left(\frac{1-i U}{T}\right)^{n} .
$$

Since this is impossible for $n>0$, we obtain the desired contradiction, and the lemma is complete.

Definition. Write $V \sim W$ if the elements $V, W \in R\left[T, T^{-1}\right]$ take on the same value at $T=1$.

Lemma 2. The relation $Z \sim 0$ is diophantine over $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$.

Proof. $Z \sim 0 \Leftrightarrow \exists X \in R\left[T, T^{-1}\right]: Z=(T-1) X$.
Lemma 3. (a) If $i \in R$, then $\left\{Y(1):(X, Y) \in X^{2}-\left(T^{2}-1\right) Y^{2}=1, X, Y \in\right.$ $\left.R\left[T, T^{-1}\right]\right\}=\mathbf{Z}[i]$.
(b) If $i \notin R$, then $\left\{Y(1):(X, Y) \in X^{2}-\left(T^{2}-1\right) Y^{2}=1, X, Y \in R\left[T, T^{-1}\right]\right\}=\mathbf{Z}$.

Proof. We shall give the explicit form of $Y_{(m, n)}^{(j)}$. We begin by noting

$$
\begin{equation*}
Y_{(m, n)}^{(j)}=\frac{\left(X_{(m, n)}^{(j)}+U Y_{(m, n)}^{(j)}\right)-\left(X_{(m, n)}^{(j)}-U Y_{(m, n)}^{(j)}\right)}{2 U}, \tag{8}
\end{equation*}
$$

from which it follows that $Y_{(m, n)}^{(3)}=-Y_{(m, n)}^{(2)}$ and $Y_{(m, n)}^{(4)}=-Y_{(m, n)}^{(1)}$. Using the binomial theorem and (8), we have:

$$
\begin{aligned}
& \text { For }(m, n) \in \mathbf{N}^{>0} \times N^{>0}, \\
& \qquad \begin{aligned}
T^{n} Y_{(m, n)}^{(1)}= & T^{n} Y_{(m, n)}^{(2)}=\left(\sum_{\substack{j=0 \\
j \text {-odd }}}^{m}\binom{m}{j} T^{m-j} U^{j-n}\right)\left(\sum_{\substack{j=0 \\
j \text {-even }}}^{n}\binom{n}{j}(i U)^{j}\right) \\
& -\left(\sum_{\substack{j=0 \\
j \text {-even }}}^{m}\binom{m}{j} T^{m-j} U^{j}\right)\left(\sum_{\substack{j=0 \\
j \text {-odd }}}^{n}\binom{n}{j}(i)^{j} U^{j-1}\right) .
\end{aligned}
\end{aligned}
$$

$\operatorname{For}(m, n) \in \mathbf{N} \times\{0\}$,

$$
Y_{(m, n)}^{(1)}=Y_{(m, n)}^{(2)}=\sum_{\substack{j=0 \\ j \text { odd }}}^{m}\binom{m}{j} T^{m-j} U^{j-1}
$$

$\operatorname{For}(0, n) \in\{0\} \times \mathbf{N}$,

$$
T^{n} Y_{(0, n)}^{(1)}=\sum_{\substack{j=0 \\ j \text {-odd }}}\binom{n}{j}(-i)^{j} U^{j-1}
$$

and

$$
T^{n} Y_{(0, n)}^{(2)}=\sum_{\substack{j=0 \\ j \text {-odd }}}\binom{n}{j}\left(i^{j}\right) U^{j-1}
$$

Using (2) and Lemma 1, and setting $T=1$ and $c= \pm 1$ yields the desired result.
DEFINITION. $\operatorname{Imt}(Y) \Leftrightarrow Y \in R\left[T, T^{-1}\right] \wedge \exists X \in R\left[T, T^{-1}\right]: X^{2}-\left(T^{2}-1\right) Y^{2}=$ 1.

Notice that Imt is diophantine over $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$.
Proof of the Theorem.
Case (a). $i \in R$. There exists an algorithm to find for any diophantine equation $P \in \mathbf{Z}\left[X_{1}, \ldots, X_{N}\right]$ a diophantine equation $P^{*} \in \mathbf{Z}[T]\left[X_{1}, \ldots, X_{N}\right]$ satisfying

$$
\begin{align*}
& \exists z_{1}, \ldots, z_{N} \in \mathbf{Z}[i]: P\left(z_{1}, \ldots, z_{N}\right)=0 \\
& \quad \leftrightarrow Z_{1}, \ldots, Z_{N} \in R\left[T, T^{-1}\right]: P^{*}\left(Z_{1}, \ldots, Z_{N}\right)=0 \tag{9}
\end{align*}
$$

Indeed, by Lemma 3 we have

$$
\begin{aligned}
& \exists z_{1}, \ldots, z_{N} \in \mathbf{Z}[i]: P\left(z_{1}, \ldots, z_{N}\right)=0 \\
& \leftrightarrow Z_{1}, \ldots, Z_{N} \in R\left[T, T^{-1}\right]:\left(\operatorname{Imt}\left(Z_{1}\right) \wedge \cdots \wedge \operatorname{Imt}\left(Z_{N}\right)\right) \wedge P\left(Z_{1}, \ldots, Z_{N}\right) \sim 0
\end{aligned}
$$

Since Imt and ~ are diophantine over $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$, (9) follows. Thus if the diophantine problem for $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$ would be solvable, then so would the diophantine problem for $\mathbf{Z}[i]$ with coefficients in \mathbf{Z}, contradicting Denef's result in [2].

Case (b). $i \notin R$. In exactly the same way we see that if the diophantine problem for $R\left[T, T^{-1}\right]$ with coefficients in $\mathbf{Z}[T]$ would be solvable, then so would Hilbert's tenth problem.

As in [3], we obtain the following corollary.
Corollary. (a) Let R be an integral domain of characteristic zero with $i \in R$. Suppose there exists a subset S of R which contains $\mathbf{Z}[i]$ and which is diophantine over $R\left[T, T^{-1}\right]$; then $\mathbf{Z}[i]$ is diophantine over $R\left[T, T^{-1}\right]$. In particular, this is true where R contains $\mathbf{Q}(i)$.
(b) Let R be an integral domain of characteristic zero with $i \notin R$. Suppose there exists a subset S of R which contains \mathbf{Z} and which is diophantine over $R\left[T, T^{-1}\right]$; then \mathbf{Z} is diophantine over $R\left[T, T^{-1}\right]$. In particular, this is true when R contains \mathbf{Q}.

Proof. We prove only (a) since (b) follows similarly. If S satisfies the conditions of the corollary, then

$$
z \in \mathbf{Z}[i] \leftrightarrow \exists Z \in R\left[T, T^{-1}\right](\operatorname{Imt}(Z) \wedge Z \sim z \wedge \in S)
$$

Moreover, if R contains $\mathbf{Q}(i)$, then we define S by

$$
\begin{aligned}
x \in S \leftrightarrow x & \in R\left[T, T^{-1}\right] \\
& \wedge\left(x=0 \vee x=1 \vee \exists y_{1}, y_{2} x y_{1}=1 \wedge(x-1) y_{2}=1\right) .
\end{aligned}
$$

References

1. M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
2. J. Denef, Hilbert's tenth problem for quadratic rings. Proc. Amer. Math. Soc. 48 (1975), 214-220.
3. \qquad , The diophantine problem for polynomial rings and fields of rational functions, Trans. Amer. Math. Soc. 242 (1978), 391-399.
4. \qquad , Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980), 227-236.
5. M. O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341-360.

Department of Mathematics, Vassar College, Poughkeepsie, New York 12601

