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A DIOPHANTINE PROBLEM FOR LAURENT POLYNOMIAL RINGS

PETER PAPPAS

Abstract. Let R be an integral domain of characteristic zero. We prove that the

diophantine problem for the Laurent polynomial ring R[T, T'1] with coefficients in

Z[7"] is unsolvable. Under suitable conditions on R we then show that either Z or

Z[/] is diophantine over R[T, 7"1].

1. Introduction. Let R be a commutative ring with identity and let S be a fixed

recursive subring of R, i.e. there exists a bijective map 0: N —> <S such that the

pre-images of the ring operations are recursive in N (see, e.g., Rabin [5]). The

diophantine problem for R with coefficients in S is said to be unsolvable (solvable) if

there exists no (an) algorithm to decide whether or not a diophantine equation in

several variables with coefficients in S has a solution in R. The diophantine problem

for the complex function field C(T) with coefficients in Z[T] is very much an open

question. Related results are as follows:

Theorem A (Denef [3]). Let R be an integral domain of characteristic zero. Then

the diophantine problem for R[T] with coefficients in Z[T] is unsolvable.

Theorem B (Denef [3]). Let K be a formally real field. Then the diophantine

problem for K(T) with coefficients in 1[T] is unsolvable.

Now let R be an integral domain of characteristic zero with quotient field F. The

smallest ring containing R in which T is invertible is the Laurent polynomial ring

R[T,T-l]a F(T).

Our main theorem is the following:

Theorem. Let R be an integral domain of characteristic zero. Then the diophantine

problem for R[T, T~l] with coefficients in Z[T] is unsolvable.

In light of Theorem A our result is not surprising; in fact, our proof follows the

same route. However, there is an interesting difference. We need to consider two

cases, namely /-f <£ R and -fA  e R.

To handle the first case we use the well-known result of M. Davis, Yu. Matija-

sevic, H. Putnam and J. Robinson (see, e.g., [1]) that Hilbert's tenth problem is

unsolvable, and for the second case we rely on a result of Denef which states that the

diophantine problem for the ring of Gaussian integers Z[i] with coefficients in Z is

unsolvable (see [2] or his generalization in [4]).
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2. The solution. We shall stay with the notation from [3] and begin by setting up

some general terminology. Let D(xx,... ,xn) be a relation on R[T, T'1]. We say that

D(xx,... ,xn) is diophantine over R[T, T'1] with coefficients in Z[T] if there exists a

diophantine equation P(xx,.. .,xn, yx,... ,ym) over Z[T] such that, for all xx,... ,xn

g R[T,T~1]:

D(xx,...,x„) ~ Syx,...,ym g R[T, T~1]: P(xx,...,x„, yx,...,ym) = 0.

We note that if Dx and D2 are diophantine over R[T, T~l] with coefficients in

Z[T], then so are Dx V D2 and Dx A D2. Indeed, Px = 0VP2 = 0*+ PXP2 = 0 and

Px = 0 A P2 = 0 *-> Px2 + TP22 = 0.
Consider the Pell equation

(1) A-2-(r2-i)y2=i

and let [/be an element in the algebraic closure of R[T, T'1] satisfying

(2) U2=T2-X.

Then we have

(3) (X+ UY)(X- UY) = X.

Let X,Y œ R[T, T~x] satisfy (1). As an algebraic function of T, X + UY can be

written in the form

g(T)/Tr + H2 - Xf(T)/Ts

with g(T),f(T) & R[T] and r, s g N. We next parametrize the curve (2) by

r=í2 + l/r2-l,       U = 2t/t2-X.

As rational functions of t, it is easily seen that X + UY and X — UY have poles only

at / = +1, + /'. Furthermore, (3) implies that they have zeros only at t = ±X, ±i.

Now observe that (X + UY)(-t)= (X - UY)(t) and so we conclude that if

X, Y g R[T, T'1] is a solution of (1), then

X+UY=c(^rY(^±Y,       X-UY=c!t~l
t + X I   \t + i j  ' \t + X I    \t + i )    '

for some c g R and some m, n G Z. Substituting these two expressions into (3)

yields c2 = 1.

Let us now consider X + UY as an algebraic function of T and suppose for the

moment that c = 1. (The case c = -X is entirely similar to this one.) We have

1 \m 11 - i
X+ UY

-(-")-(ër-'?TTr-(r+">"(iV2:
From (2),

iT-U)--lT+ur   and   (i^Er _ (i+¿2)\
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and therefore we may rewrite X + UY and X — UY as expressions involving only

positive integral exponents.

Thus if (X, Y) g R[T, T'1] X R[T, T~l] is a solution to (1), we have one of four

possible outcomes, namely

X - iU\"

T

1 + iU\n

X - UY = (T- U)

X + UY = (T + U)"'[

X- UY=(T- U)m[

X+ UY=(T- u)nß^ß^

X + iU

T

X - iU\

X- UY + (T+ U)'

X + UY = (T - U)

X- UY= (T+ U)"'(

T

1 + iU\
T

1 - iUs

T

some (m, n) g N X N;

some (m, n) g N X N;

some ( m, n ) g N X N ;

some (m, n) g N X N.

T

X + iU\

Now let S denote the ring Z[i][T, T'1]. By (2), S[U] defines a quadratic ring

extension of S. For each/ = 1,2,3,4 define two sequences X{//n), Y/J,]n), (m, n) g

N X N, of elements of 5 by

(4) xlvn)+UY£n)=(T+uy<(l^)j\

(5) X%,n)+ UY^n) = (T + U)m(^yUV'

(6) X$,n)+UY£\n)=(T-U)mll-iU

(7) X^n)+UY^\n)=(T-U)

Applying the ring automorphism S[U] -> S[U], which fixes S elementwise and

sends U to - U, together with (2) yields

Xiï,„)-UYÙ\n)=(T-U)m(]^)"=(T+U)-m(l-^y',

X%,n)- UY£m)= (T - U)m[^f-)n = (r + u)-m(?-=jßV'

*&.,- ^!„=(t + ur[^ß-)n = (t - ur(1-^

xrj,n)-uY^n)=(T+ur[^^Y = (T-ur(l-^u
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and hence, for every (m, n) g N X N and each / = 1,2,3,4, the pair (Xl£n),

V»un)) g S X S is a solution to (1).

Lemma 1. (a) If i g R, then the solutions of(X) in R[T, Tl] are of the form

{X&\„,> *#!„,),        (m, n) g N X N,/ = 1,2,3,4.

(b) ///' Í R, then the solutions of (X) in R[T, T'1] are of the form

(*<(£o>. A),       m eN,/ = 1,2,3,4.

Proof. By the foregoing discussion, it remains only to show that if ; £ R, then for

every (m, n) e Ñ X N>0andy = 1,2,3,4,

{Xr(i\n), f&U) Í R[T, Tl] X R[T, T'1].

Fix x = X¡»n), y = Y^]n) for some (m, n) g N X N>0, / g {1,2,3,4}, and

assume (x, y) g ä[7, T~l] X 7c[7\ r-1]. Let o: S[U] -» S[Í7] be the ring automor-

phism which fixes T and t/ and sends i to -/. Then a(x + Uy) = x + Uy, which by

(4)-(7) implies

1 + iU\"     ¡X - iU\"

T     I       \     T

Since this is impossible for n > 0, we obtain the desired contradiction, and the

lemma is complete.

Definition. Write V - W if the elements V, W g R[T, T'1] take on the same

value at T = X.

Lemma 2. The relation Z — 0 is diophantine over R[T, T1] with coefficients in

Z[T].

Proof. Z ~ 0 » 3A' g R[T, T~1]: Z = (T - X)X.

Lemma 3. (a) If i g R, then  {Y(X):  (X, Y) g X2 - (T2 - X)Y2 = 1,   vj€

/*[7\ T-1]} = Z[;].

(b)7//G /?,//!<?« (7(1): (À-, y) G A-2- (T2 - 1)F2 = 1, A", 7 G Ä[T, T"1]} = Z.

Proof. We shall give the explicit form of YÂ£„}. We begin by noting

{XU)     + UYU)    )-(xU)     - UYfJ)    )(J)       _   \-*(m.n)^   U '(m.n)j \^(m.,i) ul{m.n))

(8) ■ ( m. n ) 2U

from which it follows that Y^n)=-Y^n) and Y$/n)= -Y$-„y Using the bi

nomial theorem and (8), we have:

For(m,n) G N>0 X N>0,

T'nyll)       _  7,«V'(2)
J     *( m,n)        1     l(m.n)

m

E (w t'
7 = 0 ^ 7
/-odd

/ = 0
/-even

\

I   }(-(/)'

.7 = 0
/-even

¿Z    j )t"'~juj
I

\
E [jWu>-*

/-odd
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For(m, n)G N X (0),

y(l)      _   y(2)       _    y   (m)Tm-JTTJ-l
1(m.n) 1(m.n) £-1 j   I 1 u

7 = 0 7
y-odd

For (0,n) g {0} x N,

7 = 0  V      '
/-odd

and

7^(o2,„> = E (")(>J)uj-1.
.7=0 V     '
/-odd

Using (2) and Lemma 1, and setting T = X and c = +1 yields the desired result.

Definition. Imt(T) « y g R[T, T~l] a 3A" g /?[7\ T"1]: X2 - (72 - l)y2 =

1.
Notice that Imt is diophantine over R[T, T~l] with coefficients in Z[T].

Proof of the Theorem.

Case (a), /'eü. There exists an algorithm to find for any diophantine equation

P g Z[Xx,...,XN] a diophantine equation 7"* g Z[T][Xx,. . .,Xn] satisfying

Hzx,...,zN<EZ[i}:P(zx,...,zN) = 0

~ZX,...,Z„^R[T,T-1]:P*(ZX,...,ZN) = 0.

Indeed, by Lemma 3 we have

3zx,...,zNŒZ[i]:P(zx,...,zN) = 0

~ ZX,...,ZN^R[T,T-1}: (imtiZj) A ••• A ImtiZ^)) A P(ZX,...,ZN) - 0.

Since Imt and ~ are diophantine over R[T, T~l] with coefficients in Z[T], (9)

follows. Thus if the diophantine problem for R[T, T1] with coefficients in Z[T]

would be solvable, then so would the diophantine problem for Z[i] with coefficients

in Z, contradicting Denef's result in [2].

Case (b). ; í Ä. In exactly the same way we see that if the diophantine problem

for R[T, T~l] with coefficients in Z[T] would be solvable, then so would Hilbert's

tenth problem.

As in [3], we obtain the following corollary.

Corollary, (a) Let R be an integral domain of characteristic zero with i g R.

Suppose there exists a subset S of R which contains Z[i] and which is diophantine over

R[T, T'1]; then Z[i] is diophantine over R[T, T'1]. In particular, this is true where R

contains Q(i).

(b) Let R be an integral domain of characteristic zero with i £ R. Suppose there

exists a subset S of R which contains Z and which is diophantine over R[T, T'1}; then

Z is diophantine over R[T, T l]. In particular, this is true when R contains Q.



718 PETER PAPPAS

Proof. We prove only (a) since (b) follows similarly. If S satisfies the conditions

of the corollary, then

z G Z[i] «3Ze R[T, T^lm^Z) A Z ~ z A G S).

Moreover, if R contains Q(z'), then we define S by

x g S ^ x g R[T, T-1]

A(x = 0 V x = X V 3yx, y2xyx = X a(x - X)y2 = X).
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