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A DIOPHANTINE PROBLEM FOR LAURENT POLYNOMIAL RINGS
PETER PAPPAS

ABSTRACT. Let R be an integral domain of characteristic zero. We prove that the
diophantine problem for the Laurent polynomial ring R[T, T '] with coefficients in
Z[T] is unsolvable. Under suitable conditions on R we then show that either Z or
Z[i] is diophantine over R[T, T"}].

1. Introduction. Let R be a commutative ring with identity and let S be a fixed
recursive subring of R, i.e. there exists a bijective map §: N — S such that the
pre-images of the ring operations are recursive in N (see, e.g., Rabin [5]). The
diophantine problem for R with coefficients in S is said to be unsolvable (solvable) if
there exists no (an) algorithm to decide whether or not a diophantine equation in
several variables with coefficients in S has a solution in R. The diophantine problem
for the complex function field C(7') with coefficients in Z[T'] is very much an open
question. Related results are as follows:

THEOREM A (DENEF [3]). Let R be an integral domain of characteristic zero. Then
the diophantine problem for R[T | with coefficients in Z| T is unsolvable.

THEOREM B (DENEF [3]). Let K be a formally real field. Then the diophantine
problem for K(T ) with coefficients in Z|T'] is unsolvable.

Now let R be an integral domain of characteristic zero with quotient field F. The
smallest ring containing R in which T is invertible is the Laurent polynomial ring
R[T,T ' c F(T).

Our main theorem is the following:

THEOREM. Let R be an integral domain of characteristic zero. Then the diophantine
problem for R[T, T ~'] with coefficients in Z[T] is unsolvable.

In light of Theorem A our result is not surprising; in fact, our proof follows the
same route. However, there is an interesting difference. We need to consider two
cases, namely V-1 & Rand V-1 € R.

To handle the first case we use the well-known result of M. Davis, Yu. Matija-
sevic, H. Putnam and J. Robinson (see, e.g., [1]) that Hilbert’s tenth problem is
unsolvable, and for the second case we rely on a result of Denef which states that the
diophantine problem for the ring of Gaussian integers Z[i] with coefficients in Z is
unsolvable (see [2] or his generalization in [4]).
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2. The solution. We shall stay with the notation from [3] and begin by setting up

some general terminology. Let D(x;,...,x,) be a relation on R[T, T ~!]. We say that
D(xy,...,x,) is diophantine over R[T, T '] with coefficients in Z[T'] if there exists a
diophantine equation P(xy,...,X,, ¥1,---,¥,) over Z[T] such that, for all x,,...,x,
€ R[T.T™":

D(xy,...,x,) © 3y, € R[T, T7']: P(x1,. -3 Xp5 Y1revvsVm) = 0.

We note that if D, and D, are diophantine over R[T, T '] with coefficients in
Z[T}), then so are D, V D, and D, A D,. Indeed, P, =0V P,=0 < PP, =0 and
P,=0AP,=0e P2+ TP} =0.

Consider the Pell equation

(1) X*—(r*-1)Y*=1
and let U be an element in the algebraic closure of R[T, T ~'] satisfying
(2) U?=T*-1.
Then we have
(3) (X+UY)(X-UY)=1.

Let X, Y € R[T, T ] satisfy (1). As an algebraic function of T, X + UY can be
written in the form

g(T)/T"+VT? - 1/(T)/T*
with g(T), f(T) € R[T] and r, s € N. We next parametrize the curve (2) by
T=t*+1/t2-1, U=2/t*-1.

As rational functions of ¢, it is easily seen that X + UY and X — UY have poles only
at¢ = 1, +i. Furthermore, (3) implies that they have zerosonly att = +1, +i.

Now observe that (X + UY)(-t) = (X — UY)(¢t) and so we conclude that if
X,Y € R[T, T '] is a solution of (1), then

X+ UY=c(t_l)m(t_i)", X - UY=c(t—l)_m(t_i)—",

t+1 t+i t+1 t+1i
for some ¢ € R and some m, n € Z. Substituting these two expressions into (3)
yields ¢? = 1.
Let us now consider X + UY as an algebraic function of T and suppose for the
moment that ¢ = 1. (The case ¢ = -1 is entirely similar to this one.) We have

t—1\"(t—i\"
X+UY_(t+l) (t+i)

t2—1_i 2t
2 +1 2+1

=(T+U)"

)" - (r+ o) ()"

From (2),

(T-U)"=(T+U)" and (1 — iU)—"= (1 s iU)n,

T T
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and therefore we may rewrite X + UY and X — UY as expressions involving only
positive integral exponents.

Thus if (X, Y) € R[T, T '] X R[T, T} is a solution to (1), we have one of four
possible outcomes, namely

x+ vy =(T+v)"(1=Y)
T
1 — iU\" some (m,n) € N X N;
X-UY=(T-U)" =
T
-
T 9

some (m,n) € N X N;

some (m,n) € N X N;

X - UY +(T+ U)"’( +T’U) ,
X+ UY=(T- U)"'(#) ,

) some (m, n) € N X N.
m(1—1iU\"
X-UY=(T+U) (T)

Now let S denote the ring Z[i][T, T']. By (2), S[U] defines a quadratic ring
extension of S. For each j = 1,2, 3,4 define two sequences X/) ,,, Y\)),,. (m, n) €
N X N, of elements of S by

) Xy + UYG 0y = (T + U)" (l IU)"
@ XGm+ UYE n)—(r+u>"'(1 o)
© e 0¥ - (1= 05
O X3 o+ UYS = (T-U)" (1 TIU)

Applying the ring automorphism S[U] — S[U], which fixes S elementwise and
sends U to —U, together with (2) yields

Ko = Ul = m(l +TIU)n = (T U)'m(l _TiU)_”,
X@ - UY®  =(T )m(l zU)" S (T4 V) ",(1 —TiU)"”
X8 = VX = (T4 )" () = (r - oy (5]
X5 =Yy, =(T+ U)'"(1 T’U)" (T - U)—m(l +TiU)_"’
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and hence, for every (m,n) € N X N and each j = 1,2,3,4, the pair (X
Y )y e S X Sisa solution to (1).

(m.n)

(m n)*

LEMMA 1. (a) If i € R, then the solutions of (1) in R[T, T ~'] are of the form
(X0 Y2,0),  (m,n) € NXN,j=1,23,4.

(m.n)> “(m,n)
(b) If i &€ R, then the solutions of (1) in R[T, T ~!] are of the form
(XD 0y Yi0),  meN,j=1,23,4.

ProOOF. By the foregoing discussion, it remains only to show that if i & R, then for
every (m,n) € N X N>%and; = 1,2,3,4,

(X Do YD) & R[T, T x R[T, T].

(m.n)* “(m,n)
Fix x = X{),,, y=Y{), for some (m,n)e NXN~° je(1,2,3,4}, and
assume (x, y) € R[T, T '1 X R[T, T™"]. Let 6: S[U] — S[U] be the ring automor-
phism which fixes T and U and sends i to —i. Then o(x + Uy) = x + Uy, which by

(4)—(7) implies
( 1 +TiU)” _ ( 1 —TiU)”'

Since this is impossible for n > 0, we obtain the desired contradiction, and the
lemma is complete.

DEFINITION. Write V' ~ W if the elements V, W € R[T, T'l] take on the same
valueat T = 1.

LEMMA 2. The relation Z ~ O is diophantine over R[T, T '] with coefficients in
Z[T].

PROOF. Z ~ 0= IX € R[T, T ): Z=(T - 1)X.

LEMMA 3. (a) If i € R, then {Y(1): (X,Y)e X?>—(T*-1)Y?*=1, X,Ye
R[T. T} = Z[i).
(b)Ifi & R, then (Y(1): (X,Y)€ X2 = (T* = 1)Y2 =1, X, Y€ R[T,T"'|) = Z

PROOF. We shall give the explicit form of Y/ . We begin by noting

(m,n)*
(8) Y('i) _ (X(m n) + UY((m)n)) _(X(m n) - UY(m n))

(m.n) 2U ’
from which it follows that Y -Y,, and Y,

(m, n)
nomial theorem and (8), we have:

For (m,n) € N”% x N~0,

Using the bi-

(m n) (m n)*

m n n . )

T"Y((nll) n = T"Y((nzl) n)_ Z ( )Tm le ! Z (j)(lU)j
Jj=0 j=0

J-odd J-even

nm n

- x (’7)T"’"1Uf )3 (;)(:’)’U""l .
—0 —0
//evcn j{odd
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For (m, n) € N x {0},

m

Yyh = Y(Z)”)= Z (T)T"I*/U/"l_

(m.,n)y ~ L(m,
Jj=0
Jj-odd
For (0,n) € {0} XN,
T"Y(g.)n) = z (_’;)(—i)/Ujil
Jj=0
J-odd

and

n\,
v, = ¥ ()
j=0
J-odd
Using (2) and Lemma 1, and setting 7 = 1 and ¢ = +1 yields the desired result.
DEFINITION. Imt(Y) e Y€ R[T, T 'JAIXER[T, T™']: X*—(T*-1)Y?=
1.
Notice that Imt is diophantine over R[T, T ~'] with coefficients in Z{T'].
PROOF OF THE THEOREM.
Case (a). i € R. There exists an algorithm to find for any diophantine equation
P € Z[X,,...,Xy] a diophantine equation P* € Z[T ][ X,,. .., X] satisfying

3z,,...,z2y € Z[i]: P(z),...,2y) =0

9
( ) (—)Zl,,,,,ZNER[T,T_l]:P*(Zl,---qZN)zO~

Indeed, by Lemma 3 we have

3z,,...,z2y € Z[i]: P(z4,...,2y) =0
o Z,....ZyeR[T, T'): (Im(Z)) A --- Almt(Zy)) AP(Z,,....Zy) ~ 0.

Since Imt and ~ are diophantine over R[T, T '] with coefficients in Z[T], (9)
follows. Thus if the diophantine problem for R[T, T '] with coefficients in Z[T]
would be solvable, then so would the diophantine problem for Z[i] with coefficients
in Z, contradicting Denef’s result in [2].

Case (b). i &€ R. In exactly the same way we see that if the diophantine problem
for R[T, T '] with coefficients in Z[T] would be solvable, then so would Hilbert’s
tenth problem.

As in [3], we obtain the following corollary.

COROLLARY. (a) Let R be an integral domain of characteristic zero with i € R.
Suppose there exists a subset S of R which contains Z[i] and which is diophantine over
R[T, T']; then Z[i] is diophantine over R[T, T ~*). In particular, this is true where R
contains Q(i).

(b) Let R be an integral domain of characteristic zero with i € R. Suppose there
exists a subset S of R which contains Z and which is diophantine over R[T, T ~']; then
Z is diophantine over R[T, T ~'). In particular, this is true when R contains Q.
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PrROOF. We prove only (a) since (b) follows similarly. If S satisfies the conditions
of the corollary, then
z€Z[il]o3IZeR[T, T'|(Im(Z)ANZ~zA ES).
Moreover, if R contains Q(i), then we define S by

xXE€S o xeR[T, T
/\(x=0\/x=1V3y1,y2Xy1=1/\(x_1))’2=1)-
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