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POWERS OF TRANSITIVE BASES

OF MEASURE AND CATEGORY

JANUSZ PAWLIKOWSKI

Abstract. We prove that on the real line the minimal cardinality of a base of

measure zero sets equals the minimal cardinality of their transitive base. Next we

show that it is relatively consistent that the minimal cardinality of a base of meager

sets is greater than the minimal cardinality of their transitive base. We also prove

that it is relatively consistent that the transitive additivity of measure zero sets is

greater than the ordinary additivity and that the same is true about meager sets.

0. Introduction. Let P be any group and J any ideal of subsets of P. We call a

family s/ £ Ja base of ./if for each / g J there is an A g j^such that I Q A. The

minimal cardinality of a base of ./is denoted by A(./). A family j/ ç ./is called a

transitive base of J if for each / g J there exist A ^s# and p g P such that

p ■ I ç A. The minimal cardinality of a transitive base of J is denoted by A,(./). The

additivity of J', denoted by add(./ ), is the minimal cardinality of a family

si Q ./such that Ují/ÍÍ. The transitive additivity, denoted by add,(J^), is the

minimal cardinality of a set X ç P such that X • I <£ ./for some / g J.

Our set theory is ZFC. We use the standard set theoretical notation. In particular,

u is the set of all natural numbers, ^(w) is the set of all subsets of « and "u is the

set of all functions from u to w. An ordinal is the set of proceeding ordinals, e.g. if n

is a natural number, then n = {0,\,...,n - 1}. If A' is any set and k any cardinal,

then let \X\ denote the cardinality of X, [X]K the set of all subsets of X of

cardinality k and [X]*K the set of all subsets of X of cardinality not greater than k.

Let R denote the real line with its usual topology and algebraic structure. Let Q

stand for rationals and Z for integers. We fix some enumeration {qn: n g co} of Q.

Let p denote the Lebesque measure on R. If p, r g R and p < r, then let [p; r]

denote the closed interval and (p; r) the open interval with endpointsp, r. Let 3nx

mean "there is infinitely many natural «" and V«00 mean "for all but finitely many

natural «." For/, g e "« we write/ < g if for any n < w, we have/(«) < g(n) and

we write / -< g if V«00 /(«) < g(n). A subset D ç uu is a dominating family if for

any function / g uu there is d G D with / < d. The minimal cardinality of a

dominating family is denoted by A. A subset A ç "u is unbounded if there is no

/ g "w such that for any g g A we have g < f. The minimal cardinality of an

unbounded family is denoted by \.
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In this paper we deal with the ideal =Sfof null sets (measure zero sets) of R and the

ideal Jfof meager sets (first category sets) of R. We show that A,(=SP) = A(„S?) and

A,(Jf ) = A. Since models of set theory are known where A(Jf ) > A, this result

establishes a rather surprising difference between JTand ¿t°. We also construct a

model of set theory in which add(if) < add,(i?) and add(Jf) < add,(JO- In our

model we also have add(i?) < add(të'), where ^ is the ideal of strong measure zero

subsets of R (i.e. A g <€ iff for each sequence (£,),<„ of positive reals there exists a

sequence (/,),<„ of intervals such that for any /' < u, length (/,) < e, and A ç U,I¡).

Finally we show that the equality A,( Jf") = A can be extended to any Polish group

and the equality A/.^) = A(.S?) to any abelian locally compact Polish group.

We use the following technique due to T. Bartoszyhski [B]. Suppose we are given a

function/ g "(w \ 1). Let Y\„f{n) denote the infinite cartesian product of sets

/(0), /(l),...   and ß be the mapping from i~lnf{n) onto the unit interval [0; 1]

defined for each g g U„f(n) by ß(g) = I„g(n)(/(0)./(«))!• For each a G

n,,^(/(«)) let a = {g ^ UJ(n): 3«°° g(n) G a(n)}. It is easy to see that ß"ä G

JSP iff Ln\a(n)\f(nyl < ce. Let s/f = {a g i1„^(/(k)): EjaO)]/^)1 < co}.

Note that if g G n„/(rc), then also g g Y\nâP(f(n)).

The following lemma is motivated by [B].

Lemma 0.1. Let A ç [0,1] be a null set. Then there is an a 6j^ such that for any

b es/fifQ"b çzA,thenVnxb(n)çz a(n).

Proof. There exists a perfect tree T £ LimTl„<mf(n) such that for the set of its

branches [T] we have: ß"[T] is not null and is disjoint with A. For each t g T let

TT = {o e T: a Q t V o Q r). We can assume that for each t g T the set ß"[TT] is

not null, otherwise we can replace T by the tree T\ { t: ß"[TT] g jS?}. For any t g T

and « < w we set Tr(n) = {i(n): / g [Tt]} and aT(n) = f(n)\TT(n). Then for each

b ^ s/f such that ß"6 ç ^4, there exists t g T such that V«00 ¿>(h) £ aT(«). To see

this let b be given and suppose not. Then for any t g Twe have Bn00 ¿>(n) n TT(n)

=£ 0. We define a sequence (rm)m<<i): let t0 = 0; suppose that rm is defined, that

there is an « > length(Tm) such that b(n) n Tr (n) ¥= 0, and let rm + 1 be such that

t„,+ 1 2 rm and tw+1(») <=_*>(«) n TrJn). Let"? = Umxm. Then r G [T] and 3«°°

t{n) g è(«). So ß(f ) G ü"b ç yl, but ß'^T] is disjoint with A, which is a contradic-

tion.

Note also that for any t g T we have aT&s/f . This follows because for each

t g Twe have [TT] ç Yl„TT(n) so

o<p(ri7;(«))=p(n(/(«)\aT(»)))

= lim(l-|UT(0)|-/(0)-1)(l-k(l)|-/(ir1)---(l-|aT(«)|-/(n)-1)

and therefore T,naT(n)f(n)~l < oo.

Now it is easy to convert the family {aT: t g T} into a single a satisfying our

requirements.    D

I would like to thank J. Cichoh for some helpful remarks.
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1. Powers of transitive bases. We are going to prove the following results.

Theorem 1.1. A(if) = A,(Sf).

Theorem 1.2. A = A,(jT).

Let us first deal with the measure case. We begin with the following simple lemma.

Lemma 1.3. If A g S?, then there exists a sequence (An)n<ljl and a function l g "a>

such that:

{a)Acir]m[Jn>m[JA„,

(b)p(UH„) = 2~"foranyn < cc,

(c) for any n < « the set A„ is a finite subset of {[/2_'(B); (i + l)2"/<")]: i g Z}.

We divide ¿2? into classes the following way: for / g "« let SC(l) be the set of

subsets A of R for which there exists a sequence {An)n<-U with the properties (a), (b)

and (c) of Lemma 1.3. Clearly S? = U{SC(l): / G ww} and it is easy to see that if

k> I, then Se(k)2¿C(l). So if D is a dominating family, then S? = U{Sf(l):

/ g D}. On the other hand if D is not a dominating family, then it can be shown (cf.

[M2]) that Se *{J{SC(l): l g D}. Thus A = min{|A'|: Iç"«Ai?=U{i?(x):

x G X}} and therefore A,(Sf) > A. To improve this estimation we have to work a

little.

Let /: = {x g"R: (V« x(n) > 0) A (E„x(n) < oo)}. We call a set Xç/1 a

dominating family if for any y g I1 there is * G X such that V«00 y(w) < x(n). Let

A(/x) denote the minimal cardinality of a dominating family in ll. Since for any

A g J^there exists x g i1 such that ^4 £ nmU„>m(^fn - x(n); q„ + x(n)), it follows

that if A1 is a dominating family in I1, then (rimUn>m(^„ - x(n); qn + x(n)):

x G X) is a base for=S?. So A(/x) ^ A(J?). Our strategy to prove Theorem 1.1 is to

show that A,(ST)> A(ll).

Lemma 1.4. A,(ST) > AC/1).

Proof. We fix/G"(w\l) such that E„/(m)_1 < oo. Note that for each x g ll

there is g e n„/(«) ns/f such that Vh°° jc(n) < g(n)f(n)'\ So

A(/1) = min(|A|:(z£^/nn/(«)) AÍVyG^nn/í«))

(3x G A V/j00 x(/i) >y(«))\.

Let á?be a transitive base for if. By Lemma 0.1 with each fiefwe can associate

aB g jä^ such that for any b g sáf if ß"/3 £ fi, then V«00 ¿>(«) £ aB(n). For each

fieáwe define a function hB Gjs^n n„/(«): for any n < u let hB(n) = |aB(«)|.

We claim that for any g G ¿^ n !!„/(«) there is 5 G J1 such that V«00/iB(«) > g(n).

Let ge^n n„/(rt) be fixed. For each n g co let c(«) = (0,1,... ,g(«)}. Then

Z + ß"c G se. So there exists B ^ SS and r g R such that Z + ß"c + r £ B. We

shall find ¿ej^ such that ti"b £ Z + ß"c + /■ and \b(n)\ = g(n) for any n < a. If

this is done, then it follows by the definition of hB that V«00 /is(«) 3* g(«) and the

proof of the lemma is finished.
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Before defining b we reveal the structure of sets ß"a for any a g sé¡. For each

n < w let F„ = (/(0).fin))'1 and

a*(n)~[0,Fm] + a(n)-FM + {0,l,...,{F-}l-l)}-Fm.1,

where F_x = 1. Then ü"ä = rimUn>ma*(«). So for our c we have Z + ß"c + r =

DmU„>m(c*(«) + Z + r). For each n < w we set tn = entier(r • F'1) and b(n) =

[x — eniier(xF~}x): x g {tn + l,...,t„ + g(n)}}. Then b g j^ and for any « < w

we have

c*(n) + Z + r = [0; Fn] + ein) • F„ + Z • Fn_x + r

= [t„Fn; (t„ + gin) + 1)F„] + (r - r„Fn) + ZFn_x

D [(/„+l)F„;(/„ + g(«) + l)F„]+ZF„_1

-''[OSFJ + Í^J.F. + Zií,..

= />*(«) + Z.

So

ß"e = n u¿*(«)cíi u (**(«)+z)
m  n> m m  n> m

£ D  U  (c*(/i) + Z + r) = Z + ß"c + r.
m   n> m

We have defined Z> with the required properties.   □

JVoie. It follows now that A(ll) = A(Sf). It has been first proved by Bartoszyhski

in [B].

Now we shall deal with the category case. It is much easier.

Proof of Theorem 1.2. The inequality A,(Jf) > A follows from [M2] (see also

Theorem 3.2), so we show only the opposite inequality. Let D be a dominating

family in "w such that D £ u(u \ 1) and \D\ = A. For each/ g D let

G/ = nU {q„-f(n)-\qB +/(«)")•
m  n> m

Then Gf is a comeager set. We claim that the family {R \ Gf: f G D} is a transitive

base for Jf.

Suppose that A g Jf. There exists a family {Gn: n < w} of open dense sets such

that G = C\„G„ QR\A. Since G is comeager, D{G - q: çeQ) is nonempty. Let

x e D{G - q: q G Q}. Then Q £ G - x, so for any « < w we have Q £ (7„ - x.

Thus we can find a function /_ such that

U(?m-/n(^)"1;?m+/»(w)"1) £<?„-*•
m

Let / g D be such that for any n < w we have f > f„. Then GfQGn-x for any

n< w, so 6, ç G - x and (R \ Gr) + x 2 ^4.    D

Note. (1) Let ^^i? be the ideal of nowhere dense subsets of R. The above

argument shows that A = A,{JíiV3i).

(2) Let J be any ideal of subsets of a group P. We can define an unbounded

counterpart  to  At{J).   Let A,(./) = min{|j/|: ja/ £ J A (-,31 g J)ty/A g j/)
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(3p g P) (p • A £ /)}. By the method of this section we can prove that A,(if )

= add(Jzf) and A,( Jf) = A. Also interesting for its own right is that

A = min{|j/|:j#£J^A(^3/G "co)(V/l Bsf)(A g „?(/))}.

2. Additivity. We construct a Cohen extension of the universe in which add,(if)

> add(Sf) and add,(Jf) > add(Jf) hold. It is convenient to give a set-theoretic

equivalent for add, (if). Let

X* = min{W:(3/G"(co\l))(^£n/(«)A(vaGn[/(«)]")

(3x g X)i3nx xin) G a(«))j\.

We have the following easy but tedious lemma.

Lemma 2.1. Suppose that D £"(<o\ 1) is a dominating family. If a function ge"w

is such that lim„g(w) = oo, then

X* = min||A|:(3/Gi))(A£n/(„)A(vi2Gn[/(«)]^(")

(3x&X)(Énxx(n)ëa{n)))\.

The following lemma justifies the introduction of A*.

Lemma 2.2. A* = add,(if).

Proof. We first prove that A* < add,(„S"). Let A g if and X g [R]<x*. We claim

that A + X G Se. Since A + Z g SC we may assume that A + Z = A. We fix a

sequence (A„)n<u and a function / g "<o obtained from Lemma 1.3 applied to A. Let

T„, for any n < u, be the set of such K, finite subsets of {[/2-/(n); (i + \)2'l(n)):

i < 2""1}, that p(l)K) = 2""+1. Note that for any x g X and « g w there exists

K¡¡ g rB such that \JA„ + x + Z £ Uä^ + Z. Consider the family X = {(K¿:

n G «>: x G *}. Then ¿3" £ n„7; and \3C\ < A*. So there exists a g n„[TJ" such

that for any jeiwe have V«00 AT* g û(m). Let Bn = U Ua(n) for any « < w. For

any x g X we have V/i^UAT* £ Bn, so V«°°U^„ + x + Z £ B„ + Z. Therefore

.4 + A' £ nmn„<mfi„ + Z, but nmU„>m5„ is a null set because for any n < to we

have p(5„) < 2"" + 1 • n. Thus A + Xisa null set.

We now prove that A* > add,(if). Suppose that ¿/ g "« is such that d(n) > n for

any « g w. Let X £ n.2''<',) and |A] < add,(i"). We shall find a g U„âa(2di"))

such that V«°° |a(«)| < 2" and for any x g X we have V«°° x(«) G a(n). By Lemma

2.1 this suffices to prove the lemma.

We define functions k, f g "to. For each i < u> let

fc(i) = «   iff  £ 2*"*~" < / <  £ 2d(m)-"\

/(/') = 2d(k(')).

Note that £,/(/)"' < oo. If x g AT, let />x(i) = {x(k(i))} for each í < to.
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Claim. There exists c ej¡^ such that for any x g X we have V/00 bx(i) £ c(/).

To prove the claim it suffices, by Lemma 0.1, to show that U{ß"/>x: x g A"} is a

null set. For each i < co, let b(i) = {0, /(/) - 1} and Fi = (/(0)./(0)"1 (cf-

Lemma 1.4). For x g X let rx = £,x(/c(z')) • F¡. Then for any i > 0 and x g X we

have

[0; Ft] + hx(i) -F + Z- F_x £ [0; F,] + b(i) ■ F, + Z ■ F,_x + rx.

So for any x g A we have ß"6 + Z + rx 2 ß"ftx + Z. As ß"6 + Z is null and

| A"| < add,(if), the set U{ ß"/> + Z + rx: x g A"} is null. The claim is proved.

Now let c be as in the claim and for each n g u let a(n) = n{c(i): k(i) = n).

Then for any x g X we have V«00 x(n) g a(«) and for any n < w, a(«) £ 2rf(n). It

remains to show that Vnx\a(n)\ < 2". This follows by

oo >Lk(0l/(0"1,>Z2-(")--|a(«)|-.2-rf(.">=X|fl(«)|2-".   D

A^oie. From the above proof it follows that

add,(if) = min{|A|: (3/ g "<o)( A g if (/) AUAGif)}.

It is proved in [M2] that add(if) < A and add( Jf) < A. We have

Lemma 2.3. (a) add(i") = min(add,(if), A),

(b) add(Jf) = min(add,(Jf), A).

Proof, (a) Clearly add(if) < min(add,(if), A). So we prove the opposite in-

equality. Let si £ if be such that \si\ < min(add,(if), A). For each A g jj/we fix a

sequence (An)n<u and a function Ia g "« obtained from Lemma 1.3. Since

\s?\ < A there exists a function / G "co such that for each A G si we have Ia ■< I. So

U{ if^): A g j*'} c if(/) and therefore^/ £ i"(/). By the note after Lemma 2.2 we

get U si g SC.

(b) Again we only prove that add( Jf") > min(add,( Jf), A). Let si £ JT be such

that |ja?| < min(add,( Jf), A). For each A g ja/we fix a sequence (GA)n<u> of dense

open subsets of R such that \~)„G,A £ R \A. As in the proof of Theorem 1.2 we can

find for each A g si a real xA such that Q + xA £ C\„GA. So for each /l G ja/and

each n < co we can find a function/,"4 g "to such that

üfc-ßtä:1; qm + fnAimyl) £ GA - xA.
m

Since |« X si\ < A there exists a function / g "w such that / > /„^ for any A & si,

n < to. It is clear that the comeager set

6/=nU {qm-fimy1;qm+fim)-1)
n   m> n

is contained in C\„GA - xA for any A G si. Since \si\ < add,( Jf) it follows that the

set U{(R \ Gf) + xA: A g si) is meager. But it covers U si.   □

Note. As in [B] we can prove that add,(if) < add,(Jf). So add(if) < add(Jf)

implies add,(if ) < add,(Jf ). Therefore it is consistent with ZFC that add,(if )

< add,(Jf").
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We are ready to present our consistency result. The notation is standard (see

[Ml]). If P is a notion of forcing, we call a subset D £ P predense if for any p g P

there is d g D and q g P such that q < p and q < d. A trivial notion of forcing is

denoted by 1.

Theorem 2.4. //Zrc is consistent, then the theory ZFC + "add,(if) = add,(Jf)

= to2 + A = to1 + 2" = w2" 's consistent.

Proof. For any/ g "to we define a notion of forcing:

Qif)= í(n,a):n^u AÍa^Yllfim)}""") A (Vm > « |a(w)| < n)\,

\n', a') < (n, a)    iff («' > n A a|« = a'|n A Vm a'(w) 3 a(w)).

It is easy to see that Q(f) satisifies ccc and that for any A £ Q(f) the property "A

is a maximal antichain in Q(f)" is a 11} property of A and / (some reasonable

coding by subsets of « is presupposed).

The following property is crucial for our consideration: Let G be a Q{f) generic

over some model V of ZFC and let ac = U(a: (3n)((n, a) G G)}. Then ac g

n„[/(«)]" and in V[G] we have (Vx g V n n„/(«)XV«°°)(x(«) g ac(/i)).

Claim 1. If ö(/) II- (x g «), then for each k < u there is n < u such that

(V<*. a) G Ô(/))(3<7 < (k, a))(q II- x < n).

Proof. Suppose not. Then there exists k < u such that (V«)(3(A:, a) g

Q(f))((k, a) II- x > «). Let (a„)„<„ be a sequence such that for each « < to we

have (k, a„) II- (x ^ n). Then there exists Z> such that (k, b) g £>(/) and

(Vw)(3n°°)(a„|w = ¿>|w). Let (k\ b') be such that (k\ b') < (it, b) and (£', />'>

II- x = / for some / < u. Let n > I be such that a„|2/t' = ¿>|2Jt'. Then (2k', an U 6')

e Ô(A <2Ä:'. ö« U ¿>'> II- x = / and (2k', an U ¿>'> p- x > n, which is a contradic-

tion.

Suppose that V 1= ZFC + GCH. Let (/i>í<U) be an enumeration of sets heredi-

tarily of power less than to2 such that each set occurs w2 times. We define iteration

\Pt)(<a2'-

P0 = 1,        P( = lim dir P„    if £ is limit,

Í P£ * g ( fi )     if /£ is a term appropriate for P£ and P£ II- / g "to,

P( + l ~~ \Pt*l if not.

It is clear that Pw satisfies ccc and by standard forcing argument Pu II- 2" = to2.

To see that PUi II- A* = to2 let G be PU: generic over V, with G£ = G n P£, | < co2.

Let/g "to n V[G] and {xa: a < k} £ F[G] n n„/(«) with k < to2 given. By ccc

there is f < to2 such that/g V[G¡] and {xa: a < k} £ FfG^]. Now a name for/

can be chosen to be of power hereditarily less than u>2, so as a name for/we can take

some /£ for £ > f and we can assume that P£ II-/£ g "w. Then /g F[G£], {xa:

« < k} £ F[G£] and by the crucial property in K[G£+1] we have a g i~\n[f{n)]"

such that V/100 xa(n) G a(«) for each a < k.

We shall show that Pu II- ( "to n V is unbounded in "w ), which will prove that

Pu  II- A = ux. So let / be a term such that Pu  II- / g "'w. By ccc we find countable
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P £ Pu such that for any n g <o, p g P and £ g supp(p) the following sets are

predense in Pu :

{^GP:3wGco^ll-/(«) = m},        [q g P: 3m e w^r n-/£(n) = «j},

{^GP:3i£to3/»2Gco^lr-(3ap(|)=(w,a)Aa(/i) = 5)}.

Let S1 = U{supp(p): p g />}. We define the auxiliary iteration (R£)£<1J :

R0 = 1,       R£ = lim dir A,,   if £ is limit,

R£ * (ß(/£)) if I g 5, /£ is a term appropriate for Ä£,

andR£lr-/0 g "to,

i?£ * 1 if not.

Claim 2. (a) i?£ can be canonically embedded into P£ (we shall assume that

R( C Ft).
(b){p|¿:pGP}£JR£.

(c) Every dense subset of R£ is predense in P£ (this implies that if cp is a sentence of

the forcing language of Ä£ and R£ II- <p, then P( II- V*i 1= <p).

(d) For £ G S, /£ is a term appropriate for R£ and i?£ II- /£ g "to.

Proof (cf. [Ml, §5]). The proof is by induction on £. The difficulty lies in proving

(c) for the inductive step from £ to £ + 1 for £ G S. So suppose we have proved the

claim for all r/ < £ and let £ g S. Let Z> £ .R£+1 be dense. Let £ be a term

appropriate for R( such that for anyp g /?£

p\Y- q^E    iff(Vp'<p)(3(p")(7">GZ))(3p'" <p,p"){p'" \r-q" = q).

Then 2\£ II- (£ is a dense subset of ß(/£)), so by the induction hypothesis

P£ lh VR( 1= (£ is a dense subset of g(/£)).

By LI} absoluteness between FR« and F/>< it follows that P£ II- (£ is a predense

subset of ß(/£)). Now it is routine to see that D is predense in P£+1. This ends our

proof of Claim 2.

By Claim 2 it follows that R^ Ih/G "to, and so it is enough to show that

P.ai I»" (3g e "to n F)(3«-)(g(«) ^ /(«)).

Let J = {t: t is a function from the finite subset of S into to}. For r g T let

K, = {P 6 ÄU2: supp(p) = dom(0 A (V£ G supp(p))(p lh 3a p(£) = <i(£), a»}.

Note that U{ Kt: t g T} is dense in RM . Using Claim 1 we can prove by induction

on |i| the following claim.

Claim 3. Suppose that / g T and R II- x e w. Then there exists n < u such that

for anyp g Kt there is q < p such that q\\- x < n.

Now let (/,),<„ be an enumeration with infinite repetitions of the set T. We define

a function g G "« for each m < to by

g(m) = this « that Claim 3 holds with t replaced by tm

and x replaced by /( m ).

R{+i



POWERS OF TRANSITIVE BASES 727

Then Ru II- (3«°° g(n) >/(«)). To see this suppose that pEíg, k < u and

p II- (V« > k)(f(m) > g(m)). Then there is m > k and p' g K, such that p' < p.

By Claim 3 there is q < p' such that ^ 11- /(m) < g(m), which is a contradiction. D

Note. It is easy to see that A* < add(^), so if ZFC is consistent then ZFC + "2"

= to2 + add(if) = íOj + add(^) = to2" is consistent.

3. Generalizations. We present some generalizations of theorems from §1.

Theorem 3.1. Let Jf (P) be the ideal of meager sets of a Polish group P (i.e. a

topological group which is a Polish space without isolated points). Then A,( Jf"(P)) = A.

Proof. The proof of A,( Jf(P)) < A goes along the same lines as that of Theorem

1.2. So we only show that A,(Jf(P)) > A.

Let 8 be a complete metric in P. We fix an increasing sequence (En)n<u of finite

subsets of P, a sequence (en)n<u of elements of P and sequences (Kn)n<u and

(Ln)n<¡jl of open neighbourhoods of the neutral element of P such that U„En is

dense in P and for any n < to the following conditions hold:

(a) e„ g En + X \ E-1 ■ En and E„ ■ E„ U E„ ■ e„ £ En + X,

(b) for any x g En we have S(xen, x) < 2~",

(c) L„ ■ Kn + X £ K„ and en G L„\(Kn + x ; K~\x ■ E„~l ■ En ■ Kn + X ■ K&).

It is routine to see that this is possible. It is also easy to see that for any n < u and

x, y g P the set xEnKn + x is disjoint withyÄ^j or withyenKn + x.

With each increasing function g g "to we associate an open dense set Hg =

L\nEg{n)Kg{n)+x. And with each meager set G £ P we associate a sequence (G„)n<u

of open dense sets such that fl„G„ £ P\G and a function /iG g "to defined as

follows: hc(0) is any element of to; if hc(n) is defined, then we set hc(n + 1) to be

the least possible m such that there exists />„ g EmC\ Lh (M) such that:

0) Ehc(n) -bn-KmçiG0n ■ ■ ■ n GMn),

(Ü) FAc(B) • b„ £ Em,

(iii) for any x G Eh (B) we have 8(xb„, x) < 2~Hg{"\

We have the following claim from which it follows immediately that A,(K(P)) > A.

Claim. If 3«°° g(n) > hG(2n), then for any x g P we have P \ G £ xHg.

Proof. We omit the subscript G. First note that (3nx)(h(n + l)n rng(g) £

h(n)). Let x g P. We define a sequence (am)m<a of elements of P convergent to

some a g (P \ G) \xHg. For m < /¡(O) let am be any element of Em. If « is such that

h(n + 1) n rng(g) £ h(n) we set am = ah(n) for /i(«) < am < h(n + 1) and ah(n + X)

= ah{n)-b„. If « is such that h(n + 1) n rng(g) £ /i(«) we set for h(n) < m

< /i(« + 1): am = am_! if xEm_xKm is disjoint with am_xKm, or am = ii^^.! if

not. It is clear that am g Em for any m < to, and that (am)m<ai is a Cauchy sequence

in metric 8. Let a be its limit. It is not hard to see that V«00 we have a g ah(n) ■ Kh(n)

and a g ag(„) + 1 ■ ̂ g(„) + 1- By the definition of h, if for some n, h(n + 1) n rng(g)

£ /i(«), then a,,(„ + 1)tfA(n + 1) £ G0 n • • • O GA(n), so also a g G0 n • • ■ n GA(B). It

follows that (3nx)(a G G0 O • • • n G„) and consequently a g f\G„ £ P\ G. Now

suppose, in order to obtain a contradiction, that a g xH . Let « be such that
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a g xEgin)Kgin) + x. Then the set xEg(n)Kg(n) + x must be disjoint with ag(n) + 1Kg<n) + x.

But this is impossible since a is in the intersection.   D

The natural class of groups for which we would like to have Theorem 1.1 is the

class of all Polish locally compact groups. We failed to prove this but we can prove

the following.

Theorem 3.2. Let P be an abelian Polish locally compact group. Let if (P) be the

ideal of Haar measure zero subsets of P. Then A(SC(P)) = A(if ) and A,(i"(P)) =

A(i*(P)).

Proof. By a theorem of Sikorski [S, Theorem 32.5] there exists a Borel isomor-

phism <p: R -» P such that for any set X £ R we have A g if iff <p"A g if (P). So

the first equality is clear.

The group P is isomorphic to R" X P', where n < to and P' has a compact

subgroup P" such that P'/P" is discrete. If n > 0, by the Fubini theorem we have

A,(if(R" X P')) > A,(if(R)), so A,(if(P)) > A(i^) and we are done. So suppose

that n = 0. It is not hard to see that A,(^(P')) > A,(if(P")). So we may confine

ourselves with proving A,(if(P")) > A(SC).

The group P" being compact and separable is the inverse limit of a sequence

(T"(,) X S,),<<y where T = R/Z and for any / < co, n(i) g to and S, is a finite

group. If «(/') is not zero for some i < to, by the Fubini theorem and the form of the

Haar measure in the inverse limits we obtain that A,(if(P")) > A,(if(T)). But it is

clear from the proof of Theorem 1.1 that A,(if(T)) = A(if). So suppose that for any

/ < u>, n(i) = 0 and let S = liminv,S,, S0 being trivial.

We define a function / g "to: for each n > 0 let f(n) = |SJ • \Sn_x\~l, /(0) = 1.

Without loss of generality we can assume that £„/(n)-1 < °°- F°r » <J < w let qt>,-:

S- -> S, be the mappings involved in taking the inverse limit of (S(),<w. For each

n > 0 let S„' = ker<pn_x n = {sq,...,s"(ii)_x}, Sq = the unique element of S0. Let

0„-i,„: s«-i^s» in such a way that <pn_,,n ° Vu, = idls«-i- We define a

mapping E: U„f(n) -* S: forx g U„f(n) let

SK*)(0) = s°x{0),    E(x)(«) = ^„_1,„(H(x)(« - 1)) + s'x\n).

Then E is "1-1" and onto. Let p be the normalized Haar measure in S and v be the

canonical product measure in l~lnf(n). For any A"£ll„/(«) we have v(X) =

fi(z."X). Now we can prove Lemma 0.1 with S in place of [0,1] and E in place of ß.

Our strategy of proving A,(if(S)) > A (if) is the same as in Theorem 1.1. Let 38 be a

transitive base for if (S). For each g g Fl„/(«) rua^ we shall find B g SS and

hB^sij nn„/(n) such that V«00 hB(n) ^ g(n). As in Theorem 1.1 this will suffice.

Let g be given. For each n < co let a(n) = (g(0), g(l),...,g(n - 1)}. Then E"â g

if (S). So there exists B G â?and r g S such that E"ä + r £ B.

It is not hard to see that there exists E0: Y[nf(n) -* S such that Eq'ä = E"ä + r.

So by the modified Lemma 0.1 applied to E0 we have the canonical cB g si, such

that V«00 b(n) £ cB(n). Let hB(n) = \cB(n)\ for n < u. Then hB(Es/fn UJ(n)

and Vh°° g(n) < hB(n). One annoying detail remains: in defining hBwe have used
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E0. It can be overcome by noting that the definition of the cB's for different E 's can

be done so that the hBs are the same.
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