## INTEGER INVARIANTS OF CERTAIN EVEN-DIMENSIONAL KNOTS

## C. KEARTON

ABSTRACT. Integer invariants of certain simple **Z**-torsion-free 2q-knots,  $q \ge 4$ , are defined. It is shown that for  $q \ge 5$ , certain of these invariants must vanish, mod 2, if the knot is doubly-null-concordant.

Introduction. An *n-knot* is a locally flat piecewise-linear pair  $(S^{n+2}, S^n)$ , both spheres being oriented. The exterior K of k is the closure of the complement of a regular neighbourhood of  $S^n$ . A 2q-knot k is simple if K has the homotopy type of a circle below dimension q; or, equivalently, if  $\pi_i(K) \cong \pi_i(S^1)$  for  $1 \le i < q$ . Let  $\tilde{K}$  be the universal cover of K; then duality theorems show that  $H_q(\tilde{K})$  and  $H_{q+1}(\tilde{K})$  are the only nontrivial homology groups of  $\tilde{K}$  in such a case. If, in addition,  $H_q(\tilde{K})$  has no **Z**-torsion, then we refer to k as being **Z**-torsion-free. The orientations of  $S^{2q}$  and  $S^{2q+2}$  yield a canonical generator t for  $H_1(K) \cong H_1(S^1)$ , via the Alexander and Poincaré duality isomorphisms, and the covering space action on  $\tilde{K}$  makes  $H_q(\tilde{K})$  and  $H_{q+1}(\tilde{K})$  into  $\Lambda$ -modules, where  $\Lambda = \mathbf{Z}[t, t^{-1}]$ . Blanchfield duality yields a hermitian pairing into  $\Lambda_0/\Lambda$ , where  $\Lambda_0$  is the field of fractions of  $\Lambda$ , which identifies  $H_{q+1}(\tilde{K})$  as the conjugate dual of  $H_q(\tilde{K})$ . Conjugation in  $\Lambda$  is the linear extension of  $t \to t^{-1}$ .

For  $q \ge 4$ , the **Z**-torsion-free simple 2q-knots have been classified algebraically in [1] by their associated *F*-forms

$$(\mathscr{E}(\tilde{K}), H_a(\tilde{K}), p_a(\tilde{K}), [, ]_{\tilde{K}}, \tau\langle , \rangle_{\tilde{K}}),$$

where  $p_q(\tilde{K})$ :  $H_q(\tilde{K}) \rightarrow H_q(\tilde{K})/2H_q(\tilde{K}) = \mathcal{H}_q(\tilde{K})$  is the quotient map,  $\mathcal{H}_{q+1}(\tilde{K}) = H_{q+1}(\tilde{K})/2H_{q+1}(\tilde{K})$ ,  $\Pi_{q+1}(\tilde{K}) = \pi_{q+1}(\tilde{K})/2\pi_{q+1}(\tilde{K})$ , and

$$\mathscr{E}(\tilde{K}):\mathscr{H}_{q}(\tilde{K})\stackrel{\omega}{\mapsto}\Pi_{q+1}(\tilde{K})\stackrel{h}{\mapsto}\mathscr{H}_{q+1}(\tilde{K})$$

is a short exact sequence (s.e.s.) of  $\Gamma$ -modules ( $\Gamma = \mathbb{Z}_2[t, t^{-1}]$ ).

The Blanchfield pairing induces the nonsingular hermitian pairing

$${}^{\theta}\!\langle\;,\;\rangle_{\tilde{K}}\!:\mathcal{H}_{q+1}\!\left(\tilde{K}\right)\times\mathcal{H}_{q}\!\left(\tilde{K}\right)\to\Gamma_{0}/\Gamma,$$

Received by the editors March 20, 1984 and, in revised form, June 27, 1984.

1980 Mathematics Subject Classification. Primary 57Q45.

Key words and phrases. High-dimensional knot, doubly-null concordant, hermitian pairing.

748 C. KEARTON

which is related to the nonsingular hermitian pairing

$$[,]_{\tilde{K}}:\Pi_{q+1}(\tilde{K})\times\Pi_{q+1}(\tilde{K})\to\Gamma_0/\Gamma$$

by  $[x, \omega(y)]_{\tilde{K}} = {}^{\theta}\langle h(x), y \rangle_{\tilde{K}}$  for all  $x \in \prod_{a+1} (\tilde{K}), y \in \mathcal{H}_a(\tilde{K})$ .

To simplify notation, we shall identify  $\mathscr{H}_{q+1}(\tilde{K})$  with the conjugate dual  $\mathscr{H}_q(\tilde{K})^*$  and omit all mention of  $\tilde{K}$  and q. Thus we have an s.e.s. of  $\Gamma$ -modules

$$\mathscr{H} \xrightarrow{\omega} \prod \xrightarrow{h} \mathscr{H} *$$

with pairings satisfying  $[x, \omega(y)] = \langle h(x), y \rangle$ .

1. The invariants. We shall be concerned with the special case of a  $\Lambda$ -module H which is the direct sum of  $\Lambda$ -modules  $H_1, \ldots, H_n$ ; each  $H_i$  is annihilated by  $p_i^m$ , where  $p_1, \ldots, p_n$  are distinct irreducible Laurent polynomials, with  $p_i(t) = p_i(t^{-1})$ . Moreover, we assume that, mod 2, each  $p_i$  is equal to the same polynomial p, also symmetric and irreducible. Then  $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$  in the obvious notation. Since  $\Gamma$  is a PID,  $\mathcal{H}_i$  is a direct sum of  $\Gamma$ -modules  $\mathcal{H}_{i,r}$  where  $1 \leq r \leq m$  and each  $\mathcal{H}_{i,r}$  is free over  $\Gamma/(p^r)$ . Similarly,  $\mathcal{H}^* = \mathcal{H}_1^* \oplus \cdots \oplus \mathcal{H}_n^*$  and  $\mathcal{H}_i^*$  is the direct sum of modules  $\mathcal{H}_{i,r}^*$ .

In a  $\Gamma$ -module M which is annihilated by  $p^m$ , let ker  $p^r = \{x \in M: p^r x = 0\}$ . Set

$$M^{r} = \ker p^{r} / (\ker p^{r-1} + p \ker p^{r+1}).$$

Note that  $\mathscr{H}^{*r} = \mathscr{H}_1^{*r} \oplus \cdots \oplus \mathscr{H}_n^{*r}$  and that  $\mathscr{H}_i^{*r} = \mathscr{H}_{i,r}^*/p\mathscr{H}_{i,r}^*$ . For ker  $p^r \subseteq \mathscr{H}^*$ , let  $\phi_r$ : ker  $p^r \to \mathscr{H}^{*r}$  denote the quotient map. In  $\Pi$ , set  $\Pi_r = h^{-1}$  (ker  $p^r$ )  $\cap$  ker  $p^{2r}$ . From now on we shall assume that the map  $\phi_r h|_{\Pi}$ :  $\Pi_r \to \mathscr{H}^{*r}$  is onto.

Let r be fixed,  $1 \le r \le m$ . Choose a basis for  $\mathscr{H}_i^{*r}$ , regarded as a vector space over the finite field  $E = \Gamma/(p)$ . Denote the union of these bases by  $x_1, \ldots, x_N$ , where it is understood that taking them in order gives first a basis for  $\mathscr{H}_1^{*r}$ , then a basis for  $\mathscr{H}_2^{*r}$ , and so on. For each j, choose  $z_j \in \Pi_r$ , so that  $\phi_r h(z_j) = x_j$ . Define  $a_{ij} \in E$  by  $[p^{2r-1}z_i, z_j] = b_{ij}/p, \psi(b_{ij}) = a_{ij}$ , where  $\psi \colon \Gamma \to E$  is the quotient map.

LEMMA.  $a_{ij}$  is well defined.

PROOF. The element  $z_j$  may be replaced by  $z_j' = z_j + u_j + pv_j + \omega(w_j)$ , where  $h(u_j) \in \ker p^{r-1}$ ,  $h(v_j) \in \ker p^{r+1}$ , and  $u_j + pv_j + \omega(w_j) \in \ker p^{2r}$ . Note that  $[p^{2r-1}z_i', pv_j] = [p^{2r}z_i', v_j] = 0$ , and so

$$\begin{aligned} \left[ p^{2r-1}z'_{i}, z'_{j} \right] &= \left[ p^{2r-1}z'_{i}, z_{j} + u_{j} + \omega(w_{j}) \right] \\ &= \left[ p^{2r-1}z'_{i}, z_{j} + u_{j} \right] + \langle p^{2r-1}h(z'_{i}), w_{j} \rangle \\ &= \left[ p^{2r-1}z'_{i}, z_{j} + u_{j} \right] \text{ since } p^{r}h(z'_{i}) = 0 \\ &= \left[ p^{2r-1}(z_{i} + u_{i} + pv_{i}), z_{j} + u_{j} \right] + \langle w_{i}, p^{2r-1}h(z_{j} + u_{j}) \rangle \\ &= \left[ p^{2r-1}(z_{i} + u_{i} + pv_{i}), z_{j} + u_{j} \right]. \end{aligned}$$

Noting that  $p^{r-1}u_i = \omega(\alpha_i)$ , since  $p^{r-1}h(u_i) = 0$ , and that  $[p^{2r}v_i, z_j] = [v_i, p^{2r}z_j]$  =  $[v_i, 0] = 0$ , we have

$$\begin{split} \left[ \ p^{2r-1}z'_{i}, \ z_{j} \right] &= \left[ \ p^{2r-1}(z_{i} + u_{i} + pv_{i}), \ u_{j} \right] + \left[ \ p^{2r-1}z_{i}, \ z_{j} \right] + \left[ \ p^{2r-1}u_{i}, \ z_{i} \right] \\ &= \left\langle \ p'h(z_{i} + u_{i} + pv_{i}), \ \alpha_{j} \right\rangle + \left[ \ p^{2r-1}z_{i}, \ z_{j} \right] + \left\langle \ p'h(z_{j}), \ \alpha_{i} \right\rangle \\ &= \left[ \ p^{2r-1}z_{i}, \ z_{j} \right], \end{split}$$

since  $h(z_i + u_i + pv_i), h(z_i) \in \ker p^r$ .  $\square$ 

Note that the matrix  $A = (a_{ij})$  is hermitian. If we make a different choice of basis for  $\mathcal{H}_i^{*r}$ , then we obtain a transformation matrix B which is a block diagonal matrix, and A is replaced by  $B A B^*$ .

Write A in block form as  $(A_{ij})$ , where i and j run from 1 to n, corresponding to the choice of bases above. Then  $BAB^*$  has the same form,  $A_{ij}$  being replaced by  $B_iA_{ij}B_j^*$ , where  $B=\operatorname{diag}(B_1,\ldots,B_n)$  and each  $B_i$  is nonsingular. Set  $\sigma_{ij}=\operatorname{rank}(A_{ij})$ ; then these do not depend on the choice of bases, and so are invariants of the knot k. Note also that  $\sigma_{ij}^r=\sigma_{ji}^r$ , because A is hermitian.

- **2. Doubly-null-concordant knots.** An *n*-knot is doubly-knot-concordant if it is a cross section of the trivial (n + 1)-knot. For a simple **Z**-torsion-free 2q-knot k,  $q \ge 5$ , to be doubly-null-concordant, it is necessary and sufficient that its *F*-form have the following structure [2]:
  - (i)  $H = H_+ \oplus H_-$ .
  - (ii)

$$\mathscr{E} = \mathscr{E}_{+} \oplus \mathscr{E}_{-}, \text{ where } \mathscr{E}_{-} = \mathscr{E}_{+}^{*}, \text{ and}$$

$$\mathscr{E}_{+} : \mathscr{H}_{+} \xrightarrow{\omega} \Pi \xrightarrow{h} \mathscr{H}^{*}, \quad \mathscr{E} : \mathscr{H} \xrightarrow{h^{*}} \Pi^{*} \xrightarrow{\omega^{*}} \mathscr{H}_{+}^{*}.$$

(iii)  $\Pi$  and  $\Pi^*$  are self-annihilating under [ , ]; indeed, [ , ] is given by the evaluation map  $\Pi^* \times \Pi \to \Gamma_0/\Gamma$ .

Note that, in such a case,  $\Pi_{q+1}(\tilde{K}) = \Pi \oplus \Pi^*$ , and the  $\omega$ , h of the Introduction are  $\omega \oplus h^*$ ,  $h \oplus \omega^*$ , respectively.

THEOREM. Let k be a doubly-null-concordant 2q-knot,  $q \ge 5$ , which satisfies the hypotheses of §1. Then  $\sigma_{ii}^r$  is even, for all i and r.

PROOF. We know that H splits as  $H_1 \oplus \cdots \oplus H_n$  and as  $H_+ \oplus H_-$ , in both cases as a  $\Lambda$ -module. For each i,  $H_i = \{x \in H: p_i^m x = 0\} = \ker p_i^m$ . If  $x_{\epsilon} \in H_{\epsilon}$ , then  $p_i^m(x_+ + x_-) = 0$  if and only if  $p_i^m x_+ = 0$  and  $p_i^m x_- = 0$ . Thus  $H_i = H_{i,+} \oplus H_{i,-}$ , where  $H_{i,\epsilon} = H_i \cap H_{\epsilon}$ ,  $\epsilon = \pm$ , and so  $\mathcal{H}_{\epsilon} = \mathcal{H}_{1,\epsilon} \oplus \cdots \oplus \mathcal{H}_{n,\epsilon}$  in the obvious notation. Moreover,  $\mathcal{H}_{\epsilon}^r = \mathcal{H}_{1,\epsilon}^r \oplus \cdots \oplus \mathcal{H}_{n,\epsilon}^r$  for each r.

When choosing the basis  $x_1, \ldots, x_N$  of  $\mathcal{H}^{*r}$ , we can therefore arrange for this to be the union of bases for  $\mathcal{H}_{1,+}^{*r}, \mathcal{H}_{1,-}^{*r}, \mathcal{H}_{2,+}^{*r}, \mathcal{H}_{2,-}^{*r}, \ldots, \mathcal{H}_{n,+}^{*r}, \mathcal{H}_{n,-}^{*r}$ , in that order. Since  $\Pi$  and  $\Pi^*$  are self-annihilating under the pairing, each diagonal block  $A_{ii}$  of the

750 C. KEARTON

hermitian matrix A has the form

$$\begin{pmatrix} 0 & \beta_i \\ \beta_i^* & 0 \end{pmatrix},$$

and so  $\sigma_{ii}^r = \operatorname{rank} \beta_i + \operatorname{rank} \beta_i^* = 2 \operatorname{rank} \beta_i$  is even.

**3. Examples.** The first two examples are given in [1, p. 52]. Let  $p_1(t) = t^{-1} - 1 + t$ ,  $p_2(t) = t^{-1} - 3 + t$ , and set  $H = \Lambda/(p_1) \oplus \Lambda/(p_2)$  with generators  $x_1, x_2$  for  $\mathscr{H}^*$ . Let  $\Pi = \Gamma/(p^2) \oplus \Gamma/(p^2)$  with generators  $z_1, z_2$  so that  $h(z_i) = x_i$  for i = 1, 2. Define hermitian forms [, ] and  $\langle , \rangle$  on  $\Pi$  by

(i) 
$$[z_1, z_1] = 1/p^2 = [z_2, z_2], [z_1, z_2] = 0,$$

(ii) 
$$\langle z_1, z_1 \rangle = 0 = \langle z_2, z_2 \rangle, \langle z_1, z_2 \rangle = 1/p^2$$
.

In the first case, the matrix A is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ , and in the second case it is  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . The invariants  $\sigma_{ij}^r$  are

(i) 
$$\sigma_{11}^1 = \sigma_{22}^1 = 1$$
,  $\sigma_{12}^1 = 0$ ;

(ii) 
$$\sigma_{11}^1 = \sigma_{22}^1 = 0$$
,  $\sigma_{12}^1 = 1$ .

Note that the first F-form belongs to a knot which is not doubly-null-concordant; taking  $\mathscr{H}_{+}^* = \langle x_1 \rangle$ ,  $\mathscr{H}_{-}^* = \langle x_2 \rangle$ , it is easy to see that the second F-form represents a doubly-null-concordant knot.

Defining the hermitian form in the obvious way, we can create F-forms giving rise to a matrix A which is

- (iii)  $\binom{1}{1}$ , and
- (iv)  $\binom{0}{1}$  Neither of the corresponding knots is doubly-null-concordant, by the Theorem.

## REFERENCES

- 1. C. Kearton, An algebraic classification of certain simple even-dimensional knots, Trans. Amer. Math. Soc. 276 (1983), 1-53.
- 2. \_\_\_\_\_, Doubly-null concordant simple even-dimensional knots, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 163-174.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DURHAM, DURHAM DH1 3LE, ENGLAND