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COMMUTATIVE MONOID RINGS AS HILBERT RINGS

ROBERT GILMER1

Abstract. Let S be a cancellative monoid with quotient group of torsion-free rank

a. We show that the monoid ring R[S] is a Hilbert ring if and only if the polynomial

ring R[{ X, },s/] is a Hilbert ring, where |/| = a.

Assume that R is a commutative unitary ring and G is an abelian group. The first

research problem listed in [K, Chapter 7] is that of determining equivalent conditions

in order that the group ring R[G] should be a Hilbert ring. Matsuda has considered

this question in [Ml, §6]. His results show that for G finitely generated, R[G] and R

are simultaneously Hilbert rings; if G is not finitely generated, then R[G] a Hilbert

ring implies that R is a Hilbert ring, but the converse fails. In [M2, §5] Matsuda

considers briefly the corresponding Hilbert-ring-characterization problem for a

monoid ring R[S], where S is torsion-free and cancellative. Let a be the torsion-free

rank of G and let {Xj)lsl be a set of indeterminates over R of cardinality a. In

Corollary 1 we show that R[G] and P[{^,},e/] are simultaneously Hilbert rings.

While the problem of determining equivalent conditions for P[{Ar,}/e/] to be a

Hilbert ring has not been completely resolved, it has been worked on extensively [Kr,

Go, L, Gl, H], and a significant body of positive results exists concerning this

problem. The proof of Theorem 1 suggests the following conjecture: if S is a

cancellative commutative monoid with quotient group G, then R[S] is a Hilbert ring

if and only if R[G] is a Hilbert ring; this result is established in Theorem 2.

All monoids considered are assumed to be commutative, and rings are assumed to

be commutative and unitary. The statement of Theorem 1 uses the following

terminology. For a cardinal number a, an extension ring T of R is said to be

a-generated over R if T is generated over R by a set of cardinality at most a.

Theorem 1. Assume that X = {XA is a set of indeterminates of cardinality a over

the ring R. Denote by Za the direct sum of a copies of the additive group Z of integers.

The following conditions are equivalent.

(1) R[X] is not a Hilbert ring.

(2) There exists a prime ideal P of R such that R/P admits an a-generated extension

ring that is a G-domain, but not afield.

(3) The group ring R[Za] is not a Hilbert ring.
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Proof. (1) => (2). If R[X] is not a Hilbert ring, then there exists a G-ideal Q of

R[X] that is not maximal [G2, Theorem 31.8]. Hence, if P = Q P R, then R[X]/Q

is an a-generated extension ring of R/P that is a G-domain, but not a field.

(2) => (3). Let D = R/P and let / = />[{a,},e/] be an a-generated extension

domain of D that is a G-domain, but not a field. With an eye toward proving

Theorem 2, we show that if T is a subring of D[{ X¡), {X'1)] = D[Za] containing

D[X], then T is not a Hilbert ring. Since / is a G-domain, it has nonzero pseudo-

radical [G3, Theorem 3; G2, Theorem 31.1; Ka, §§1-3]. Choose a nonzero element b

in the pseudoradical of/. Then 1 4- ba¡ is a unit of/ for each i, so

ß[{l  +&!,.},  {(1+ftfl,.)-1}]   Ç/.

The D-homomorphism of £>[{Ar/}] onto Z)[{1 + ba¡}] determined by X¡ -* 1 + ba¡

admits an extension a to a D-homomorphism of D[Za] onto

r i iii
/)[{l+ôû(.},{(l+te|.) -1}],

and under a we have

/3o(r) 3fl[{i + K}] =/>[{&!/}].

Now

a(P)[r1] 3 D[{ba,},b->] =2 Z>[{fl,.}, ft"1] 2 /[6"1],

the quotient field of /. Consequently, a(P)[è_1] is the quotient field of /, and a(T)

is a G-domain. If a(T) were a field, then a(T)[b~l], and hence/, would be algebraic

over a(T), and this contradicts the fact that / is not a field. Therefore a(T), and

hence T, is not a Hilbert ring. In particular, D[Za] s R[Za]/P[Za] is not a Hilbert

ring, and hence neither is R[Za].

(3) => (1). If a is finite, then (3) implies that R is not a Hilbert ring, and hence

neither is R[X]. If a is infinite, then R[Za] is a-generated over R, and thus is a

homomorphic image of P[Ar]. Therefore (1) follows in this case as well. This

completes the proof of Theorem 1.

Corollary 1. Assume that G is an abelian group of torsion-free rank a. If {X¡}ieI

is a set of indeterminates over R of cardinality a, then R[G] and R[{ X¡}¡eI] are

simultaneously Hilbert rings. In particular, if a is finite, then R[G] is a Hilbert ring if

and only if R is a Hilbert ring.

Proof. Choose a free subgroup F of G such that G/F is a torsion group. Then

R[G] is integral over R[F], and hence R[G] and R[F] are simultaneously Hilbert

rings. Since F = Z", the result then follows from Theorem 1.

If Z0 denotes the additive monoid of nonnegative integers, then P[{A',}je/] is

isomorphic to the monoid ring of Zq over R, where a = |7j. Moreover, Za is the

quotient group of Z¡¡. Does the equivalence of conditions (1) and (3) of Theorem 1

generalize to the case of an arbitrary cancellative monoid and its quotient group?

Theorem 2 shows that this question has an affirmative answer. Theorem 1 is used in

the proof of Theorem 2.

Theorem 2. If S is a cancellative monoid with quotient group G, then R[S] and

R[G] are simultaneously Hilbert rings.
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Proof. Let a be the torsion-free rank of G (according to the terminology of [G4,

p. 165], a is also referred to as the torsion-free rank of S). If a is finite, then

Theorem 2 follows from [G5, Corollary 1], If a is infinite, then choose a free subset F

of S such that G/H is a torsion group, where H is the subgroup of G generated by F.

Let T = S P H. We observe that R[S] is integral over R[T]. This is true since, for

5 g 5, there exists a positive integer n such that ns G H P S = T. Since the

extensions R[H] ç R[G] and R[T] Q R[S] are integral, P[G] and R[H] are simul-

taneously Hilbert rings, and the same is true of R[T] and R[S]. This reduces the

proof of Theorem 2 to the case where G = Za and S is a submonoid of G containing

z,0.

Suppose P[ZQ] is not a Hilbert ring. There exist a prime ideal P of R and an

a-generated extension of R/P which is G-domain but not a field. The proof that (2)

implies (3) in Theorem 1 then shows that no domain between (P/P)[Zq] and

(R/P)[Za] is a Hilbert ring. In particular, (R/P)[S] is not a Hilbert ring, so neither

is R[S]. Conversely, if R[S] fails to be a Hilbert ring then, since a is infinite, |S| = a

and R[S] is a homomorphic image of R[Zq\, therefore neither R[Zfi] nor R[Za] is a

Hilbert ring in this case.

We referred in the introduction to work that has been done on the problem of

determining conditions under which a polynomial ring in infinitely many inde-

terminates over a Hilbert ring is again a Hilbert ring. To illustrate the relation

between some of this work and Theorems 1 and 2, we record a result labelled as

Theorem 3. Part (a) of this result, a restatement of [G5, Corollary 1], follows from

Theorems 1 and 2; part (b) uses the same two theorems and Theorem 2.9 of [Gl],

while part (c), which generalizes (b), is a consequence of Theorems 1 and 2 and [H,

Theorem 1].

Theorem 3. Assume that R is a commutative unitary ring and that S is a cancellative

monoid of torsion-free rank a.

(a) If a is finite, then R[S] is a Hilbert ring if and only if R is a Hilbert ring.

Suppose that a is infinite.

(b) If R is afield, then R[S] is a Hilbert ring if and only if a < \R\.

(c) If R is a Noetherian ring (or, more generally, if Spec(P) is Noetherian and R

satisfies d.c.c. on prime ideals), then R[S] is a Hilbert ring if and only if the following

conditions are satisfied.

(i) \R/M\ > a for each maximal ideal M of R.

(ii) For each nonmaximal prime P of R, the set of primes Q of R, such that Q > P

and ht(Q/P) = X, has cardinality greater than a.
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