COMMUTATIVE MONOID RINGS AS HILBERT RINGS

ROBERT GILMER¹

ABSTRACT. Let S be a cancellative monoid with quotient group of torsion-free rank α . We show that the monoid ring R[S] is a Hilbert ring if and only if the polynomial ring $R[\{X_i\}_{i\in I}]$ is a Hilbert ring, where $|I| = \alpha$.

Assume that R is a commutative unitary ring and G is an abelian group. The first research problem listed in [K, Chapter 7] is that of determining equivalent conditions in order that the group ring R[G] should be a Hilbert ring. Matsuda has considered this question in [M1, §6]. His results show that for G finitely generated, R[G] and R are simultaneously Hilbert rings; if G is not finitely generated, then R[G] a Hilbert ring implies that R is a Hilbert ring, but the converse fails. In [M2, §5] Matsuda considers briefly the corresponding Hilbert-ring-characterization problem for a monoid ring R[S], where S is torsion-free and cancellative. Let α be the torsion-free rank of G and let $\{X_i\}_{i\in I}$ be a set of indeterminates over R of cardinality α . In Corollary 1 we show that R[G] and $R[\{X_i\}_{i\in I}]$ are simultaneously Hilbert rings. While the problem of determining equivalent conditions for $R[\{X_i\}_{i\in I}]$ to be a Hilbert ring has not been completely resolved, it has been worked on extensively [Kr, Go, L, G1, H, and a significant body of positive results exists concerning this problem. The proof of Theorem 1 suggests the following conjecture: if S is a cancellative commutative monoid with quotient group G, then R[S] is a Hilbert ring if and only if R[G] is a Hilbert ring; this result is established in Theorem 2.

All monoids considered are assumed to be commutative, and rings are assumed to be commutative and unitary. The statement of Theorem 1 uses the following terminology. For a cardinal number α , an extension ring T of R is said to be α -generated over R if T is generated over R by a set of cardinality at most α .

THEOREM 1. Assume that $X = \{X_i\}$ is a set of indeterminates of cardinality α over the ring R. Denote by Z^{α} the direct sum of α copies of the additive group Z of integers. The following conditions are equivalent.

- (1) R[X] is not a Hilbert ring.
- (2) There exists a prime ideal P of R such that R/P admits an α -generated extension ring that is a G-domain, but not a field.
 - (3) The group ring $R[Z^{\alpha}]$ is not a Hilbert ring.

Received by the editors June 18, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 13B25, 13B99; Secondary 20C07, 20M25.

Key words and phrases. Monoid ring, group ring, Hilbert ring, G-ideal, G-domain, pseudoradical.

¹Research supported by NSF Grant MCS 8122095.

PROOF. (1) \Rightarrow (2). If R[X] is not a Hilbert ring, then there exists a G-ideal Q of R[X] that is not maximal [G2, Theorem 31.8]. Hence, if $P = Q \cap R$, then R[X]/Q is an α -generated extension ring of R/P that is a G-domain, but not a field.

(2) \Rightarrow (3). Let D = R/P and let $J = D[\{a_i\}_{i \in I}]$ be an α -generated extension domain of D that is a G-domain, but not a field. With an eye toward proving Theorem 2, we show that if T is a subring of $D[\{X_i\}, \{X_i^{-1}\}] \simeq D[Z^{\alpha}]$ containing D[X], then T is not a Hilbert ring. Since J is a G-domain, it has nonzero pseudoradical [G3, Theorem 3; G2, Theorem 31.1; Ka, §§1-3]. Choose a nonzero element D in the pseudoradical of D. Then D is a unit of D for each D is a

$$D[\{1 + ba_i\}, \{(1 + ba_i)^{-1}\}] \subseteq J.$$

The *D*-homomorphism of $D[\{X_i\}]$ onto $D[\{1 + ba_i\}]$ determined by $X_i \to 1 + ba_i$ admits an extension σ to a *D*-homomorphism of $D[Z^{\alpha}]$ onto

$$D[\{1+ba_i\},\{(1+ba_i)^{-1}\}],$$

and under σ we have

$$J \supseteq \sigma(T) \supseteq D[\{1 + ba_i\}] = D[\{ba_i\}].$$

Now

$$\sigma(T)[b^{-1}] \supseteq D[\{ba_i\}, b^{-1}] \supseteq D[\{a_i\}, b^{-1}] \supseteq J[b^{-1}],$$

the quotient field of J. Consequently, $\sigma(T)[b^{-1}]$ is the quotient field of J, and $\sigma(T)$ is a G-domain. If $\sigma(T)$ were a field, then $\sigma(T)[b^{-1}]$, and hence J, would be algebraic over $\sigma(T)$, and this contradicts the fact that J is not a field. Therefore $\sigma(T)$, and hence T, is not a Hilbert ring. In particular, $D[Z^{\alpha}] \simeq R[Z^{\alpha}]/P[Z^{\alpha}]$ is not a Hilbert ring, and hence neither is $R[Z^{\alpha}]$.

(3) \Rightarrow (1). If α is finite, then (3) implies that R is not a Hilbert ring, and hence neither is R[X]. If α is infinite, then $R[Z^{\alpha}]$ is α -generated over R, and thus is a homomorphic image of R[X]. Therefore (1) follows in this case as well. This completes the proof of Theorem 1.

COROLLARY 1. Assume that G is an abelian group of torsion-free rank α . If $\{X_i\}_{i \in I}$ is a set of indeterminates over R of cardinality α , then R[G] and $R[\{X_i\}_{i \in I}]$ are simultaneously Hilbert rings. In particular, if α is finite, then R[G] is a Hilbert ring if and only if R is a Hilbert ring.

PROOF. Choose a free subgroup F of G such that G/F is a torsion group. Then R[G] is integral over R[F], and hence R[G] and R[F] are simultaneously Hilbert rings. Since $F \simeq Z^{\alpha}$, the result then follows from Theorem 1.

If Z_0 denotes the additive monoid of nonnegative integers, then $R[\{X_i\}_{i\in I}]$ is isomorphic to the monoid ring of Z_0^{α} over R, where $\alpha=|I|$. Moreover, Z^{α} is the quotient group of Z_0^{α} . Does the equivalence of conditions (1) and (3) of Theorem 1 generalize to the case of an arbitrary cancellative monoid and its quotient group? Theorem 2 shows that this question has an affirmative answer. Theorem 1 is used in the proof of Theorem 2.

THEOREM 2. If S is a cancellative monoid with quotient group G, then R[S] and R[G] are simultaneously Hilbert rings.

PROOF. Let α be the torsion-free rank of G (according to the terminology of [G4, p. 165], α is also referred to as the torsion-free rank of S). If α is finite, then Theorem 2 follows from [G5, Corollary 1]. If α is infinite, then choose a free subset F of S such that G/H is a torsion group, where H is the subgroup of G generated by F. Let $T = S \cap H$. We observe that R[S] is integral over R[T]. This is true since, for $s \in S$, there exists a positive integer n such that $ns \in H \cap S = T$. Since the extensions $R[H] \subseteq R[G]$ and $R[T] \subseteq R[S]$ are integral, R[G] and R[H] are simultaneously Hilbert rings, and the same is true of R[T] and R[S]. This reduces the proof of Theorem 2 to the case where $G = Z^{\alpha}$ and S is a submonoid of G containing Z_0^{α} .

Suppose $R[Z^{\alpha}]$ is not a Hilbert ring. There exist a prime ideal P of R and an α -generated extension of R/P which is G-domain but not a field. The proof that (2) implies (3) in Theorem 1 then shows that no domain between $(R/P)[Z_0^{\alpha}]$ and $(R/P)[Z^{\alpha}]$ is a Hilbert ring. In particular, (R/P)[S] is not a Hilbert ring, so neither is R[S]. Conversely, if R[S] fails to be a Hilbert ring then, since α is infinite, $|S| = \alpha$ and R[S] is a homomorphic image of $R[Z_0^{\alpha}]$; therefore neither $R[Z_0^{\alpha}]$ nor $R[Z^{\alpha}]$ is a Hilbert ring in this case.

We referred in the introduction to work that has been done on the problem of determining conditions under which a polynomial ring in infinitely many indeterminates over a Hilbert ring is again a Hilbert ring. To illustrate the relation between some of this work and Theorems 1 and 2, we record a result labelled as Theorem 3. Part (a) of this result, a restatement of [G5, Corollary 1], follows from Theorems 1 and 2; part (b) uses the same two theorems and Theorem 2.9 of [G1], while part (c), which generalizes (b), is a consequence of Theorems 1 and 2 and [H, Theorem 1].

THEOREM 3. Assume that R is a commutative unitary ring and that S is a cancellative monoid of torsion-free rank α .

- (a) If α is finite, then R[S] is a Hilbert ring if and only if R is a Hilbert ring. Suppose that α is infinite.
- (b) If R is a field, then R[S] is a Hilbert ring if and only if $\alpha < |R|$.
- (c) If R is a Noetherian ring (or, more generally, if Spec(R) is Noetherian and R satisfies d.c.c. on prime ideals), then R[S] is a Hilbert ring if and only if the following conditions are satisfied.
 - (i) $|R/M| > \alpha$ for each maximal ideal M of R.
- (ii) For each nonmaximal prime P of R, the set of primes Q of R, such that Q > P and ht(Q/P) = 1, has cardinality greater than α .

REFERENCES

[G1] R. Gilmer, On polynomial rings over a Hilbert ring, Michigan Math. J. 18 (1971), 205-212.
[G2] ______, Multiplicative ideal theory, Dekker, New York, 1972.
[G3] ______, The pseudo-radical of a commutative ring, Pacific J. Math. 19 (1966), 275-284.
[G4] ______, Commutative semigroup rings, Univ. of Chicago Press, Chicago, 1984.
[G5] ______, Hilbert subalgebras generated by monomials, Comm. Algebra (to appear).
[Go] O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z. 54 (1951), 136-140.
[H] W. Heinzer, Polynomial rings over a Hilbert ring, Michigan Math. J. 31 (1984), 83-88.

- [K] G. Karpilovsky, Commutative group algebras, Dekker, New York, 1983.
- [Ka] I. Kaplansky, Commutative rings, Allyn & Bacon, Boston, Mass., 1970.
- [Kr] W. Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensionstheorie, Math. Z. 54 (1951), 354-387.
- [L] S. Lang, Hilbert's Nullstellensatz in infinite-dimensional space, Proc. Amer. Math. Soc. 3 (1952), 407-410.
- [M1] R. Matsuda, Torsion-free abelian group rings. III, Bull. Fac. Sci. Ibaraki Univ. Ser. A 9 (1977),
- [M2] _____, Torsion-free abelian semigroup rings. IV, Bull. Fac. Sci. Ibaraki Univ. Ser. A 10 (1978), 1–27.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306