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PULL-BACKS FOR PROJECTORS IN FINITE GROUPS

PETER FÖRSTER

Abstract. We exhibit a pull-back construction for Schunck class projectors in finite

groups and some of its consequences.

In [3] a pull-back construction for projectors of saturated formations in finite

soluble groups has been given1, based on a result of Huppert that does not generalise

to Schunck classes. Therefore (and with a specific application in mind—see [2]), in

the present note we give an alternative approach to this construction and show that,

in fact, pull-backs exist for Schunck class projectors in arbitrary finite groups. Here

we rely on the theory of Schunck classes and their projectors in finite groups as

developed in [1] and assume the reader to be familiar with terminology as well as

main results of [1] mentioning only that, in [1, 4.2], we have shown that, for every

Schunck classa and any finite group G, the set

l H < GIH is an ^projector of HNm

Prqj^(G) = | wheneverNiá G rç+ii HN (/ = i;...,w _ i)

is nonempty; observe that H g Proj¿(G) and N< G implies that H g Proj¿(HN).

Theorem. Let H be a subdirect subgroup of Gx X G2 and put K = (H P Gx) X (H

P G2). Further, let X: G Proj¿(G,) (/' = 1, 2) and let Hi be the inverse image of Xj in

H with respect to the projection map Vf. H -* G,. Assume that HXK = H2K and put

X = HXP H2. Then for each Y g Proj¿( X) we have

(i) Tg Proj¿(//), and

(ii) X and Y are subdirect subgroups of Xx X X2.

Proof. By definition of //,, H P G3_, < Hi (i = X, 2). Therefore, applying Dede-

kind's modular law and using HXK = H2K, we get

X(H P G3_,) = (Hx P H2)(H P G3_,) = H,P [H3_,(H P G3_,)\

= H, P [H3_,(H P G,)(H P G3_,)\ = H, P H3   ,K = H, P H,K = H,.

Consequently,

X/XP G3  , = X/XP(H P G3_,) = X(H P G3_,)/(H P G3_,)

= H,/(HPG3_,) = X,^3e,

-
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constrast to what is done below.
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as H n G3 ̂ , is the kernel of 7T,| H. Hence F g ProjJ^(A') covers both X/X P Gx and

X/X P G2. Moreover,

XG, = X(H P Gi)Gi = H3_,G, = X3_, X G„

and so X is a subdirect subgroup of Xx X X2. In view of A' = Y(X P G,) it is clear

that Y is also subdirect in Xx X X2, which completes the proof of (ii).

In order to prove (i), we proceed by induction on \G\. Applying [1, 3.3], we see

that, w.l.o.g., H = HXK = H2K; note that HXK = H2K < (Xx X X2)K

= XX(H P Gx) X X2(H P G2), which is a consequence of Hi = X(H P G%_¡) and

K = (H n Gx) X (H P G2), and that H,K/K G Pro)^(H/K), which follows from

H/K = (G, X G2)/(H P G,) X G3_, via the canonical map, as X¡ g Proj¿(G,). In

addition, we may assume that G, = A', g jf (/' = 1,2):

Indeed, suppose that Gx £ Jf. Then [1, 2.1b] yields existence of N< Gx such that

Gx/N g b(Jif). Aiming at an application of the inductive hypothesis, we want to

replace Gx, G2, H, K, Xx, X2, Hx, H2, X, Y by XXN, G2, H P G*, K P G*, Xx, X2,

Hx, H2P G*, X, Y, where G* = (XXN) X G2. We check that the hypotheses carry

over to these groups:

From Gx X G2 = GXH = XX(H P GX)H = XXH—here Gx/H P Gx = Gx X

G2/(H P GX)XG2 = HG2/KG2 = H/H P KG2 = H/K = H,K/K g ¿Tand Xx g

Pro)^r(Gx) have been used—we obtain that

(XXN)(H P XXNG2) = N(XXH P XXNG2) = XXN X G2,

while XXN X G2 = (H P XXNG2)G2 is immediate from HG2 = Gx X G2. Hence

H n ^/VGj is subdirect in XXN X G2. Recall that H¡ = X(H P G3_,) < X¡ X G3_,..

Therefore, using the defining equation for A' and the fact that X < (Xx X G2) P

(G, x X2) = Xx X X2,we calculate

(H2 P XXNG2)(KP XXNG2) = {X(H P Gx) P XXNG2)(H P XXN)(H P G2)

= X(H PGXP XXNG2)(H P XXN)(H P G2)

= X(H P XXN)(H P G2) = HX(KP XXNG2);

note that Hx < Xx X G2. By [1, 3.3], Xx g Proj¿(XxN).

Now by induction,

(*) Ye Proj¿(//n XXNG2).

Let M/N be a minimal normal subgroup of Gx/N. Since Gx/N g b(Jíf), Gx/M

G Jtf; i.e., Gj = A'jAf. As was observed earlier in this proof, X = Y(X P G2) and

XG2 = Xx X G2, and thus XXG2 = XG2 = YG2. We conclude that GXG2 = XXMG2

= YMG2, and

H = YMG2 P H = Y(H P MG2) = (H P XXNG2)(H P MG2),

H P XXNG2 = Y(H P MG2 P XXNG2).

In view of the canonical isomorphism from H/H P G2 to GXG2/G2, = Gx, we may

apply [1, 4.1] to obtain from this decomposition of H

(**) H P XXNG2/H P NG2 g Proj¿ (H/H P NG2).



PROJECTORS IN FINITE GROUPS 21

Combining (*) and (**) with [1, 3.3] shows that fe Proj^(H). This proves our

claim that w.l.o.g., G, e/(i= 1,2). In particular, G, = X¡, and so the definitions

of Hi and X yield that Hx = H2 = H = Hx P H2 = X, in which case (i) holds

trivially. □

We do not know whether the above result is true with Proj^ instead of

Proj¿—our proof depends crucially on working with elements of Proj¿. rather than

arbitrary ^projectors.

Now define

Jf(jf,Jf)- {GG |Proj^(G)çJ^},

where JFis a Schunck class and JMs a formation. Then X(Ji?, iF) is obviously a

formation, provided only that J^ is.

When dealing with insoluble groups, however, it is sometimes more appropriate to

employ the class X*(J(?, 5F)of all finite groups H satisfying

(i) Proj¿(#) n &+ 0, and

(ii) N< H, E < H, E/N G Proj^(H/N) P&=* E = FN for some F g

Pro}¿(H)P&:

this is due to the fact that H may have several conjugacy classes of ^projectors,

among which there can occur nonisomorphic ones. Of course, one is mainly

interested in condition (i), but (ii) ensures that X*(Jif, ¿F) is a formation. The

following consequence of [1, 3.3] indicates that condition (ii) makes sense.

Lemma. // X denotes one of Proj^, Proj¿, then X(G/N) = X(G)N/N whenever

N<G.

Corollary. X*(Jt?, &) is a formation.

Proof. Quotient closure of tT= X*(Jíf, J*") is trivial. Therefore, to verify subdi-

rect product closure, it suffices to consider groups H with two distinct minimal

normal subgroups Nx and iV2 such that H/N¡ g íT (i = 1,2); it is to be shown that

//EÎ.

Put G, = H/N3_¡, so that (to within isomorphism) H is a subdirect subgroup of

Gx X G2 satisfying H P G, = N¡; as before, let K = Nx X N2. Since H/K is a

quotient of H/N¡ g SC, we can find F/K g Proj¿(H/K) P 3?. Condition (ii) yields

that the image of F/K in G¡/N¡ (with respect to the canonical projection) is some

XjNj/N, with X, g Proj¿(G,) nF. Now the Theorem applies (with H,K = F),

whence (i) holds for H.

In order to prove condition (ii), let N<H, E/N g Pro]^.(H/N)I P &. If

Nx X N2 < N, then our Theorem can be applied, with E < E/N2 X E/Nx, Nx X N2,

and F(NX X N2) for a suitable F g Proji(p) such that F(NX X N2)/(NX X N2) g ^

instead of H < Gx X G2; K, and HXK = H2K, and gives the desired conclusion;

note that (due to H/N, g il) Xt.g Proj^( E/N,) P 3F can be found. If N, < N for

some i g {1,2}, a similar argument applies to E < E/N X E/E P N¡.   D

The preceding result gives rise to a method for showing that the formations

generated by certain groups G are contained in a given homomorph <&: one might
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try to find a Schunck class Jf and a formation .Fsuch that G e X*(J?,^r) and

X*(^P, Jf) n b(9) czjiff\^r; verification of condition (ii) is sometimes easy by

means of the conjugacy criterion [1, 3.4c] for elements of Proj¿.(G). For a specific

application of this type the reader is referred to [2, 4.1].
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