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ON IDEALS OF FREE AND FREE NILPOTENT LIE ALGEBRAS

MELIH BORAL

Abstract. It is proved that in a free nilpotent Lie algebra there are no nonabelian

ideals which are free nilpotent as subalgebras. It is also shown that, for any proper

ideal 5 of a free Lie algebra F, the quotient of the lower central terms Fm/Sm is not

finitely generated when F =£ F2 + S. If F = F2 + S, F/S is finite-dimensional and S

is finitely generated as an ideal in F. then Fm/Sm is finitely generated as an algebra

for all m «s 1.

1. Introduction. It is known that every subalgebra of a free Lie algebra is again

free (Sirsov [3]), but a nonabelian ideal, and hence a nonabelian subalgebra of a free

nilpotent Lie algebra, is not, in general, free nilpotent. In the first part of this paper

we prove that in a free nilpotent Lie algebra there are no proper nonabelian ideals

which are free nilpotent as subalgebras.

In the second part we consider the quotient algebra of a lower central term of a

free Lie algebra by an ideal and note certain differences with analogous problems in

group theory. If F is a free Lie algebra, S any proper ideal of F and Fm, Sm are the

wth terms of the lower central series of F, S, respectively, we prove that Fm/Sm is

not finitely generated when F+ F2 + S. We will also show that if F = F2 + S, F/S

is finite-dimensional and 5 is finitely generated as an ideal in F, then Fm/S„, is

finitely generated (as an algebra) for all m > 1.

We consider Lie algebras over a field T. The Lie operation is indicated by

juxtaposition and we write

a(a(---(ab))---) = a-b
--

r times

where a and b are elements of a Lie algebra L. We use Greek letters for the elements

of the field T. By Lm we denote the wth term of the lower central series of L and say

that L is free nilpotent of class n if there is a free Lie algebra F of the same rank as L

such that L is isomorphic to F/Fn + X. If H is a Hall basis for the free Lie algebra F,

then the elements in H of length < n form a basis for L (Hall [2]). Given any b G F,

expressed as a linear combination of these basis elements, by the leading term of b,

we understand the minimal term of H which appears in that expression (minimal

with respect to the length preserving order in H) and denote it by \d(b).
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2. Ideals as free nilpotent subalgebras. Every abelian ideal of a free nilpotent Lie

algebra is free abelian. A nonabelian ideal, however, is not necessarily free nilpotent

as a subalgebra (consider L2 as an ideal in L = F/Fs). We have

Theorem 2.1. The only ideals which are free nilpotent subalgebras in a free nilpotent

Lie algebra are free abelian or the whole algebra.

Proof. Let L be a free nilpotent Lie algebra of class n and X a free generating set

for L. Ii \X\ = 1 or L is abelian, then there is nothing to prove. Hence we

presuppose that \X\ > 1 and n > X. Let us also assume that H is a Hall basis for L

constructed on X, and S is a proper nonabelian ideal which is free nilpotent of class

r > X, where r < n. We will show that this leads to a contradiction. We consider two

cases separately:

Case I. r < n. Let q be the integer such that 5 ç Lq but S G. Lq+X. Choose a free

generating set Y for S, which contains an element y whose leading term has length q.

Suppose that q = 1. If Y has at least two elements which are linearly independent

modulo L2, then we can produce an element of Sn, which is nonzero in L,

contradicting r < n. Now assume that Y has only one element y which is nonzero

modulo L2 and Y — {y} ç L2. Choose x g X such that x is not equal to a scalar

multiple of the leading term of y. Then the element x ■"~1y g S belongs to Ln, but

due to the form of its leading term it cannot be written as a product of two elements

of S, and hence x -n~ly G S2. Thus the element y(x ■n~1y) g S2 does not belong to

S3 but it belongs to Ln + X and hence it is trivial in L, contradicting r > X.

Suppose now that q > X. Now for any x G X, xy G S and its leading term has

length q + X. Hence xy £ S2 since any nonzero element of S2 has leading term of

length  ^ 2q. Then the element t = y -r(xy) in Sr+X has leading term of length

qr + (q + X). But Sr+X ç L„ + 1 implies that qr + (q + 1) > n + 1 or, equivalently,

(1) (r+l)q>n.

Now for some x' # x in X, consider the elements/ = x ■ q~2(xy) and g = x' ■ q~2(xy)

of S. Both have leading terms with lengths (q — 2) + (q + X) = 2q — X and hence

/, g G S2. Then the element w = f -r~lg G Sr+X implies that the length of ld(w) =

r(2q — X) < n + 1. Equivalently,

(r+X)q+(rq-q- r)<n + X.

Comparing with (1) we obtain the inequality rq — q — r < 0. Therefore
t T\(r - X)q < r.

Since q > X we have q = 2 and r = 2 as the only possibility left for consideration, in

which case, 5 ç L2 but S?L3 and S3 c Ln+X. Then Y contains y = ß(ab) + ■ ■ ■,

where 0 ¥= ß g F and ab is its leading term, a, b g X. Let

u = ay = ßa(ab) + • • ■ ,       v = a(ay) = ßa(a(ab)) + ■ ■ ■ ,

both elements in S. Due to the nature of their leading terms they are not expressible

as linear combinations of products of elements of Y and hence u, v G S2. Then

uv G S3, which implies that length of ld(i/i;) = 7 < n + 1. But y(yu) g S3 implies

that length of ld(y(yu)) = 1 > n + X. Therefore

7 < n + X < 7,

which is a contradiction.
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Case II. r = n. Let Y = {yx, y2,...} be a free generating set for S. Since r = n, Y

is linearly independent modulo L2. Let x g L — S, x G L2, T be the subalgebra of

L generated by x and S, and H Y be a Hall basis for S on F. The set HY U {x} is

linearly independent in L or else we contradict x G S. Furthermore, any element in

T can be expressed as a linear combination of elements in HY U {x}, which implies

that it is a basis for T and that T is generated by the set Y U {x}.

Suppose that 7 U {*} is linearly dependent modulo L2. Then

(2) x = a+f,

where a = T.iaiyi G L2, a, g T and / g L2. Multiplying (2) by x, n — X times, we

obtain x -"~la = -x <"~}f g Ln + X. But x •n~1q G Ln + X is a nonzero element of L, a

contradiction. Thus {x} U T is linearly independent modulo L2. Then it freely

generates T. Let x < yx < y2 < ■ ■ ■ be an ordering on {x} U Y and //'be a Hall

basis constructed on this set such that H' o HY. Then the element xyx oiH' belongs

to S and xyx g S2 since S is free nilpotent of class r = «. Then

(3) *vi = L i.jyjj + /,

where y, g T (not all zero), /eS3 and j,^ g Hy ç //'. But (3) contradicts the

linear independence of elements of H' modulo T3.    Q.E.D.

3. The quotient algebra of a lower central term of a Lie algebra by an ¡deal.

D. Spellman [4] studied the relationship of the lower central series of a normal

subgroup of finite index to the lower central series of a free group of finite rank. We

consider similar problems for ideals in general of free Lie algebras. Our assumptions,

methods and results will differ from those of [4],

It is proved by B. Baumslag [1] that a nonzero finitely generated subalgebra which

is an ideal in a free Lie algebra must be the whole algebra. Let F be a free Lie

algebra, S an ideal of F and consider the nontrivial case where S is not finitely

generated as a subalgebra. Clearly S„, is an ideal of Fm and we can form Fm/Sm. The

terms of the lower central series Fm are not finitely generated when F is generated by

more than one element.

In a free group G of finite rank, there are certain proper normal subgroups A' such

that Gm/Nm is an infinite group but it is of finite rank. For Lie algebras as well, there

are cases where Fm/Sm is finitely generated. We first prove

Proposition 3.1. Let S be a proper ideal in a free Lie algebra F such that

F =£ F2 + S. Then Fm/Sm is not finitely generated for m > X.

Proof. To prove that Fm/Sm, m > 1, is not finitely generated, it is sufficient to

show that (Fm/Sm)/(Fm/Sm)2 = Fm/((Fm)2 + Sm) is infinite-dimensional. Replac-

ing S by the proper ideal 5 + F2 we see that we may assume S 2 F2. Thus we may

choose a free generating set {a, b, c,...} for F such that aíS, S ç F2 +

span{6, c,...}. Give F a grading by setting deg(a) = A and deg(x) = B for all the

other generators b, c,_Then

Fmç F2 ç £ F{iA+jB)
./>o
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so   (F„)2 ç LJ>XF(,A+JB).   But   S Q EJ>0FUA+jB)   implies   that   Sm Q S2 ç

Li>xF('A+JB\ Thus

(Rm)2 + smQ £f*^*>.
)>i

IfC= {a ■' b: i^m — X}, then C is an infinite linearly independent set contained in

LF<'A + B\ Since

{LF(lA + B))pl £/?<"+;*)) = {0},

Vy>l '

we conclude that the image of C in Fm/((Fm)2 + Sm) is linearly independent. Hence

F„,/Sm is not finitely generated.

If F = F2 + S, then Fm/Sm may be finitely generated. We first consider the case

where m = 2.

Proposition 3.2. Let S be a proper ideal in a free Lie algebra F. Suppose that

F = F2 + S, F/S is finite-dimensional and S is finitely generated as an ideal in F.

Then F2/S2 is finitely generated as an algebra.

Proof. F2 contains the ideal F2 P S, and so in F2/S2 we have

F2/S2 2 (F2 P S)/S2,

where the second term is an abelian ideal. The quotient (F2/S2)/((F2 P S)/S2) =

F2/(F2 P S) = (F2 + S)/S = F/S is finite-dimensional, and so it suffices to show

that (F2P S)/S2 is finitely generated as an F/S-module.

Let {s¡: i g /} be a finite generating set for S as an F-module. This generating set

may be chosen so that there is some subset I' ç I such that F2 P span{s,: /' g /} =

span{í,: /' g /'}.

Let {Wy _/ g y} be a basis for F/S. As F/S is finite-dimensional J is finite. Now

as {s;: i g /} generates S as an F-module, {s¡ + S2: i g /} generates S/S2 as an

F/S-module. Thus (by the Poincaré-Birkhoff-Witt Theorem) S/S2 is generated by

the set

I YlwfAsjiie I,n}> ol,
jej       I I

where the product T\¡mJwfj is taken in some fixed order. Clearly F2 P S/S2 is

spanned by

(( n **/'W 'G 7' nj> 0,^nj> °lu (s<: 'e 7'^
l\.juj       I I

and so F2 P S/S2 is generated as an F/S-module by the finite set {wjS¡: i g /,

7 g y} u {i,: / g /'}. This proves the proposition.

Let us note that it is possible to satisfy all the requirements in the hypothesis

above. As an example take F to be the free Lie algebra on {e, f,h) and S to be

generated by (ef) - h, (he) - 2e, and (hf) + 2/. Then F = F2 + S and all the

conditions are satisfied.
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To prove a similar result for the case m > 2, we first need

Lemma 3.3. If S is a proper ideal of a free Lie algebra F such that F = F2 + S, then

Fm_x = Fn, + Sm_xforallm>2.

Proof. The result holds for m = 2 by hypothesis. Assuming the result to be true

for m — X we see that

Fm-i = [F, F„,_2] = [F2 + S, Fm_x + Sm_2] ç Fm + Sm_x,

and so the result holds by induction. (Note that if H and K are subspaces of F,

[H, K] is the subspace spanned by all elements of the form (hk), where h g H and

k g K.)

Proposition 3.4. Let S be a proper ideal in a free Lie algebra F. Suppose that

F = F2 + S, F/S is finite-dimensional and S is finitely generated as an ideal in F.

Then Fm/Sm is finitely generated ( as an algebra ) for all m > 1.

Proof. We proceed by induction on m. The case m = 1 is obvious and the case

m = 2 is done above. Thus we assume that m > 2.

We assume that Fm-i/.$m-i is finitely generated. Fm contains the ideal Fm P Sm_x

and

Fm/\Fm Fi Sm_x) a (Fm + Sm_x)/Sm_x = Fm_x/Sm^x,

so Fm/(Fm n Sm_x) is finitely generated.

For any set X <z F, let G( X) denote the subalgebra of F generated by X. Then Fm

contains a finite subset X such that Fm = G(X) + (Fm P Sm_x). Therefore Fm P S¡

= (G(X) + (F„, n Sn_x% and (Fm P S,) = (G(X) P St) + (Fm P Sm_x) for 1 < i

< m — 2, and so

\FmPS„FmPSm_,_x\

ç [(G(A-) n S¡) +(F„, n Sm_x), (G(X) n S„,_,_x) +(Fm P S„,_x)]

QG(X) + Sm.

Therefore, letting I = Y.'iZ"'~2[FmP S„ Fm P Sm_,_x\, it is sufficient to show that

{Fm n Sm-x)/Sm + I is finitely generated as an FJ(Fm P S) = (Fm + S)/S =

F/S-module.

We first show that S„, _ X/S„, + I is finitely generated as an F/5-module. Let K be

a finite generating set for S as an ideal of F and let

F'K = span{(ad xx) ■ ■ ■ (ad x¡)k: xx,. ..,x,■ e. F, k g K }.

If i = (ix,...,im-x) let |i| « ij +  ■ • • + im_x-    Suppose a, b are chosen so that

ia > ih and ib > ij for all j * a. (That is, ia, ih are the two largest elements of

{»!,... ,im-x)-) Let II 'II = >a ~ 'ft and Q(i) denote the ideal in F generated by

[••• [[FliK, f^-k]f^k\ ■■■ F'-'ä:].

The Jacobi identity implies that

Q(ix,...,ia,...,im_x) ç Q(ix.ia - l,...,im_x)

j = m — 1

+    E    Q(ix,...,ij+ X,...,ia- l,...,i„,_x),
7 = 1
j*a



28 melih boral

and thus if || i|| > 1 we have

Ô(i)ç    E    Ô(k).
m < um

Thus S„,_x ç 2¡o(i) ç 2MI||<1ß(i). Now if ||i|| < 1 and | i'| > (w - l)2 + 1 we see

that ia, ih > m. Let c = max{a, ¿>}.Then

[••• [[F''K,Fi2K]--- F,<íK]F,'K] ■■■ F'- -'*]

5. L- * •: ílfm-0 Sc_x, Fm P S]F^K] ■ ■ ■ F'^k]

rz(adS)m-1-c[FmPSc_x,FmPS]çzI

and so Q(i) ç I. Thus

Sm-iQ

s

£ 0(0 + s + /.

I|i||<l

|i|«(m-l)2+l

Since there are only finitely many i satisfying ||i||<l,|i|<(w-l)2 + l, and since

each Q(i) + Sm/Sm is finitely generated as an F/S-module (as F/S is finite-dimen-

sional), Sm _ x/Sm + / is finitely generated as an F/S-module.

Finally, let {yt: (£/) be a finite generating set for Sm_x/Sm + I (as an

F/5-module). This generating set may be so chosen that there is a subset T' ç T

such that

span{y,: t g T') = (Fm/Sm + I) P span{ v- t G T).

If {wy. j g J} is a basis for F/S, then

{>>,:; g F'} u{^(:/€/,i€ T)

generates Fm n Sm_ ,/Sm + /. This completes the proof of the proposition.
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