NOTE ON THE TRIVIAL ZEROS OF DIRICHLET L-FUNCTIONS

TOM M. APOSTOL

ABSTRACT. The trivial zeros of Dirichlet L-functions are located without use of the functional equation.

If χ is a Dirichlet character mod k, then the Dirichlet L-function $L(s, \chi)$ has trivial zeros whose location is determined by the number $\chi(-1)$ which is ± 1 . If $\chi(-1) = 1$ there are zeros at the points $s = 0, -2, -4, -6, \ldots$, and if $\chi(-1) = -1$ there are zeros at the points $s = -1, -3, -5, -7, \ldots$. In other words, for every integer $n \ge 0$,

(1)
$$\chi(-1) = (-1)^n \text{ implies } L(-n, \chi) = 0.$$

This result is usually derived from the functional equation for the L-functions which is valid only for primitive characters. A separate argument is then needed to treat the nonprimitive characters (see [2, pp. 215–216]).

This note gives a short proof of (1) which does not require the functional equation for L-functions and which applies to all Dirichlet characters, primitive or not. It makes use of the representation [1, p. 255]

(2)
$$L(s,\chi) = k^{-s} \sum_{r=1}^{k-1} \chi(r) \zeta(s,r/k)$$

which holds for all complex s and all Dirichlet characters $\chi \mod k$. Here $\zeta(s, a)$ is the Hurwitz zeta function defined for R(s) > 1 by the series

$$\zeta(s,a) = \sum_{n=0}^{\infty} (n+a)^{-s},$$

where $0 < a \le 1$; it can be extended as a meromorphic function to the entire s-plane by the contour integral

(3)
$$\zeta(s,a) = \frac{\Gamma(1-s)}{2\pi i} \int_C \frac{z^{s-1}e^{az}}{1-e^z} dz,$$

where C is a loop around the negative real axis [1, p. 253]. The only property of $\zeta(s, a)$ we need to prove (1) is the formula

(4)
$$\zeta(-n, 1-a) = (-1)^{n+1} \zeta(-n, a)$$

Received by the editors January 19, 1984.

1980 Mathematics Subject Classification. Primary 10H08.

Key words and phrases. Dirichlet L-function, trivial zeros.

30 T. M. APOSTOL

for integer n. This follows at once by replacing z by -z in the contour integral (3). Taking s = -n in (2) and using (4) we find

$$L(-n,\chi) = k^n \sum_{r=1}^{k-1} \chi(r) \zeta(-n, \frac{r}{k}) = k^n \sum_{r=1}^{k-1} \chi(k-r) \zeta(-n, \frac{k-r}{k})$$
$$= k^n \chi(-1) (-1)^{n+1} \sum_{r=1}^{k-1} \chi(r) \zeta(-n, \frac{r}{k})$$
$$= -\chi(-1) (-1)^n L(-n, \chi).$$

If $\chi(-1) = (-1)^n$ we get $L(-n, \chi) = -L(-n, \chi)$, which proves (1).

REFERENCES

- 1. Tom M. Apostol, *Introduction to analytic number theory*, Undergraduate Texts in Math., Springer-Verlag, New York, 1976.
- 2. Karl Prachar, *Primzahlverteilung*, Die Grundlehren der Math. Wissenschaften, Band 91, Springer-Verlag, Berlin, 1957.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125