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ON PRIMES OF DEGREE ONE IN FUNCTION FIELDS

GREG W. ANDERSON AND ROBERT INDIK

Abstract. We show that over the algebraic closure of a finite field, every point of

the jacobian of a curve annihilated by a power of a prime / is the /-primary

component of a point in the image of the curve.

Let A" be a smooth, projective, geometrically connected curve of genus g > 0

defined over the algebraic closure F of the field F of q elements. Fixing a basepoint

x0 of X in F , let tp: X -» J denote the embedding assigning to each point x of X the

divisor class of the difference of x and x0. Let / be any prime number and let X:

/(F(/) -* J(F)i denote the projection of the torsion group /(F) onto its /-primary

component. The object of this note is to prove the following

_
Theorem. The map X ° <p: X(F ) -» /(F), is surjective.

For the proof we need a lemma giving control over the distribution of primes of

degree one in arithmetic progressions. Let K/k be an abelian unramified extension

of global fields of positive characteristic. Let g be the genus of k and suppose that Fq

is the field of constants of both K and k. For each prime v of k let F„ g Gal(K/k)

denote the corresponding arithmetic Frobenius.

Lemma. // there exists a0 g Gal(K/k) such that Fv # a0 for all primes v of k of

degree one, then q < (2g[K: k] + 3)2.

Proof. By hypothesis

(•) Ei = -EEÍKI^(^,),
e v     ¡p

where v runs through all the primes of k of degree one (i.e., of residue field

coinciding with F ), and \p runs through all the nontrivial complex-valued characters

of Gal( K/k ). Now by the Riemann Hypothesis (see Appendix 5 of [W]) the left side

of (*) is bounded below by q + X - 2gy[q; the right side is bounded above by

([K: k] - X)(2g - 2)i/q. The desired conclusion follows immediately.

Turning now to the proof of the theorem, suppose that some point d g J(Fg) fails

to be in the image of X ° (p. Assume, as is permissible, that X is the base-change of a

smooth projective curve X0 defined over F, jc0 is F^-rational, and d is an F^-rational

point of the jacobian /0 of X0. Fix a rational prime r distinct from /. Let k denote the

function field of X0, k an algebraic closure of k, and v0 the prime of degree one of k
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to which x0 corresponds. For each positive integer n let k„ denote the compositum in

k of k and the unique extension of F in k of degree r ". Let Kn denote the maximal

unramified abelian extension of k„ in k of degree a power of / in which v0 splits

completely. Letting ax,...,a2g denote the reciprocal roots of the numerator of the

zeta function of A',, over F , we have

ik:*„il= n|i-<|,.
7-1

where |?|, is any extension to Q of the /-adic absolute value of Q, whence [Kn : kn] is

bounded. But for all n the Artin symbol (d, Kn/kn) g Qat(Kn/kn) fails to equal the

arithmetic Frobenius F„ for all primes v of k„ of degree one, whence, via the lemma,

an estimate

q^{2g[K„:k„}+3)2,

a contradiction. This proves the theorem.
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