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MORRIS NEWMAN

MATRIX COMPLETION THEOREMS1

Abstract. Let Rbea principal ideal ring, M, „ the set of / X n matrices over R. The

following results are proved :

(a) Let D e M„ „. Then the least nonnegative integer t such that a matrix [% p]

exists which belongs to GL(n + t, R) is t = n - p, where p is the number of

invariant factors of D equal to 1.

(b) Any primitive element of M¡ 2„ may be completed to a 2n X 2n symplectic

matrix.

(c) If A, B s M„ „ are such that [A, B] is primitive and AB is symmetric, then

[A, B] may be completed to a 2« X In symplectic matrix.

(d) If A e M, ,, B e M, „_, are such that [A, B] is primitive and A is symmetric,

then [A, B] may be completed to a symmetric element of SL(«, R), provided that

1 « t « h/3.

(e) If n > 3, then any primitive element of Mln occurs as the first row of the

commutator of two elements of SL(n, R).

1. Introduction. In this paper we consider matrices over a principal ideal ring and

the problem of completing, or embedding, such matrices so that the resulting

matrices satisfy certain given criteria. We let R denote an arbitrary principal ideal

ring and define Mln = Mt „(R), the set of t X n matrices over R, Mn = Mn(R), the

set of « X « matrices over R. As usual, Gh(n, R) will denote the group of unit (or

unimodular) matrices of Mn, and SL(«, R) the subgroup of GL(w, R) consisting of

the matrices of determinant 1. We also let Sp(2«, R) denote the subgroup of

symplectic matrices of SL(2«, R ), defined as the automorphs of the matrix K = [°.¡¿],

where I = I„ is the nXn identity matrix. Equivalently, if S = [AB], where

A, B,C, D g M„, then S is symplectic if and only if ADT - BCT = /, and ABT,

CDT are symmetric. Sp(2«, R) is, in general, a subgroup of infinite index of

SL(2«, R), although Sp(2, R) = SL(2, R).

Suppose 1 < t < n. The element a of Mt „ is said to be primitive if dt(a) = 1,

where dt(a) is the tlh determinantal divisor of a. The following result and its

generalization are the basis of the entire theory of matrix equivalence.

Basic Result. Let a be a primitive element of Mx n. Then an element ofGL(n, R)

exists whose first row is a. If n ^ 2, an element ofSL(n, R) exists whose first row is a.
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Generalization. Suppose 1 < t < n. Let a be a primitive element of M, . Then

an element of GL(«, R) exists whose first / rows coincide with a. \i t < n, an

element of SL(«, R) exists whose first t rows coincide with a.

Thus, such an a may always be completed to a unimodular matrix. For a

convenient reference on matrix equivalence, see [1 or 2],

2. Statement of results. We prove a number of completion theorems concerned

with block matrices, symplectic matrices, symmetric matrices, matrix commutators,

and, of course, unimodular matrices. The theorems to be proved fall in the following

categories.
r,,       1 I      ■
Block completions.

Theorem 1. Let D g M„. Let t be the least nonnegative integer such that matrices

A, B, C exist with A e M„ Be M, ,,_„ C g Mn_, „ and [£%] g GL(n + t, R).

Then t = n — p, where p is just the number of ones in the Smith normal form of D.

Symplectic completions.

Theorem 2. Let t g MX2n be primitive. Then t may be completed to an element of

Sp(2«, R).

Theorem 3. Let A, B g Mn, and suppose [A, B] is primitive and ABT is symmetric.

Then [A, B] may be completed to an element of Sp(2«, R).

This theorem is not new. It was first proved by C. L. Siegel [5, p. 592] in

connection with his work on the applications of the symplectic group to number

theory; a generalization (with a different proof) was given by I. Reiner in [4], The

proof given here is totally different from either of these proofs and very simple, so

we include it.

Symmetric completions. It was shown in [3] that if n > 3 and a is any primitive

element of Mx „, then a may be completed to a symmetric element of SL(«, R). This

result was used to prove certain factorization theorems for the elements of SL(«, R)

in terms of symmetric matrices. Theorem 5 below generalizes this result and is based

on the following

Theorem 4. Let A g Mp, B g M , A = AT. Assume that [A, B] is primitive. Then

matrices Y, Z exists such that Y G M    , Z G Mp, Z = ZT, and

M
A -BY

YTBT      Z
Gh(2p,R).

Theorem 5. Suppose X < t < n/3. Let A g AL, B g M, „_,, A = AT. Assume that

[A, B] is primitive. Then [A, B] may be completed to a symmetric element ofSL(n, R).

The result is false, in general, if it is only assumed that 1 < t < n/2. This leaves

the question of determining those t for which the result is true.

Matrix commutators.

Theorem 6. Suppose n > 3. Let a be a primitive element of Mx n. Then matrices

A, BofSL(n, R) exist such that the first row ofABA~lBl is a.
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3. Proofs.

Proof of Theorem 1. First note that [°, ¿] is a 2« X 2« completion, so that t < n.

Furthermore, if p = n, then D is already unimodular and t = 0 in this case. Thus, we

may assume p < n. We may also assume that D is in Smith normal form; for if

Í/, Kg GL(n, R), then

D UDV

and the matrices

are unimodular.

Let. s2,...,s, denote the invariant factors of D. Then

0
D =

IP

0

where E is in Smith normal form and satisfies E = 0 mod s +x.

Suppose now that

M =
A

C
B
D

is unimodular. Partition M in accordance with the partition imposed by D, so that

M

A

Ci     h
C,      0

B,     B,

0

E

A

C,

c    0

Bx    B2

I„     0

0

modi p+i-

The matrix B2 is a t X (n - p) matrix, and if t < n - p, then det(M) = 0 mod sp + x.

Hence, a necessary condition for M to be unimodular is that t > n — p. We need

only show, therefore, that t = n — p will suffice. This is clear, however, since we may

choose^ = 0, Bx = 0, B2 = /„_., Cx = 0, C2 = I„^p; whence

M =

0

0

0

E

is clearly unimodular. This completes the proof.

Proof of Theorem 2. We may assume that n > 1, since the theorem is known

and trivial for n = 1. We use the fact that if S is any element of Sp(2«, R), then t

has a symplectic completion if and only if tS has a symplectic completion. Write

t = [a; ß], where a, ß e MXn. Choose U g GL(«, R) so that ßU is in Hermite

normal form. Then

M =

is symplectic, and -rM

0)

(t/T1   (

o       i

[ * ; ßU]. Hence, we may assume

ß=[ßx,0,...,0].
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Now   suppose   that   a = [ax, a2,.. .,a„].   Choose   KgGL(h — 1, R)   so   that

[a2,... ,a„]Kis in Hermite normal form, and put

r  n   - \W 0

^=[1] + F'     "=[<,   (wry

Then N is symplectic, and [a; ß]N = [aW; ß(WT)~1] = [aW; ß] because of (1).

This alllows us to assume that

(2) a = [a,, a2,0,... ,0].

Let E¡, denote (as usual) the matrix which has a 1 in the (;', /) position and 0

elsewhere. Then if x, y are arbitrary elements of R, the matrices

S{x)
I

xExx
W(y) yEu

i

are symplectic; and

[a;ß]S(x)= [ax + xßx,a2,0,...,0;ßx,0,...,0],

[a;ß]W(y) = [ax, a2,0,... ,0; ßx + ya,,0,... ,0].

This sets up a euclidean algorithm, and after finitely many appropriate transforma-

tions of this type we get that [a; ß] has the form

[0,a2,0,...,0;ßx,0,...,0]    or    [ax, a2,0,... ,0; 0,0,... ,0].

The second case is the desired form, so we leave it for the present and consider the

first case. Now let x, y be any elements of R, and set
" I   yFX2 + .yF2i

T(x) =
I 0

V(y) =
0

Then T(x), V(y) are symplectic, and

[a;ß]T(x) = [0,a2 + xßx,0,... ,0; ßx,0,...,0],

[a;ß]T(y)= [0, a2,0,.. .,0; ßx + ya2,0,.. .,0],

Again this sets up a euclidean algorithm, and after finitely many appropriate

transformations of this type we get that [a; ß] has the form

[0,a2,0,...,0;0,0,...,0]    or    [0,0,0,.. .,0; ßx,0,.. .,0].

Here the first form is the desired form, and the second may be put into the first by

multiplication by the symplectic matrix [°¡¿]. Hence, in all cases we can find a

symplectic matrix S such that

[a;ß]S= [a';0].

But a' is also primitive. Thus, a' may be completed to a unimodular matrix A. But

then

T-\A °

is symplectic with first row [a'; 0], and TS~l is symplectic with first row [a; ß]. This

completes the proof.
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Proof of Theorem 3. Let ir be any prime of R. By the results of [2, p. 128] we

may determine a symmetric X such that (det(^4 + BX), ir) = X. In particular, this

means that A + BXis nonsingular. Then ['x0¡] is symplectic, and

[A,B]
I
X = [A + BX,B\.

Thus, we may assume that, originally, A is nonsingular (once again, we use the fact

that if S is symplectic, then [A, B] may be completed to a symplectic matrix if and

only if [A, B]S may be completed to a symplectic matrix). Similarly, we can also

determine a symmetric Y such that AY + B is nonsingular. Then [ '0 J] is symplectic

and

[A,B] [A,AY+ B].

Thus, we may assume that, originally, both A and B are nonsingular.

Now again using the results of [2, p. 128], determine X symmetric so that

(det(^4 + BX), det(£)) = 1. Arguing as before, this allows us to assume that,

originally, A and B are nonsingular and (det(A), det(fi)) = 1. Put a = det(,4),

b = det(5), and determine a', b' g R so that aa' - bb' = 1. Then [A, B] has the

symplectic completion

A

b'(BTfd>

B
7-xadj

a'(AT)

where "adj" denotes the adjugate matrix. This completes the proof.

Proof of Theorem 4. Since [A, B] is primitive, matrices X, Y exist such that

AX - BY = Ip, X g Mp,Ye Mq

= det( N ), where

/
N

Now

X'

I

XT

We have (with Z as yet undetermined) det( M )

YTBT

A

YTBT

-BY

Z

Z - YTBTX ZA-X1 YTBTX

YTBTX = X1

which is symmetric. Thus, the choice Z

choice N becomes

(XTA - I)X

XTAX-

■■ X + XT - XTAX,

X — XT is permissible. For this

7V = det(A) = (-1)'

Hence, M is also unimodular and the proof is concluded.

Proof of Theorem 5. We first note that if U g GL(í, R), V <

then

GL(m - t, R),

A

BT

UT

0

0

VT

UAUT

L VBTUT

UBV
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Thus, [A, B] has a symmetric completion if and only if [UAUT,UBVT] has a

symmetric completion. Thus, we may assume that, originally, B is in Smith normal

form; and since / < n - t, we may assume that [A, B] = [A, Bx,0], where Bx is

t X t, the zero block is t X (n — 2t), and [A, Bx] must also be primitive. Further-

more, it suffices to consider only the extreme case when n is minimal, namely n = 3t,

since the others may be reduced to this case by a simple argument involving direct

sums with an identity matrix of appropriate size.

Since [A, Bx] is primitive, there is a 2t X 2t unimodular matrix

A
*

Bx
*

Hence, the matrix

*i
-BÏ

A - BXB{ B,

is also unimodular. It follows that [A - BXB(, Bx] is primitive. In addition, A - BXBX

is symmetric since A is symmetric. Set Ax= A — BXBX and consider the 3t X 3t

matrix

M

A

BTx

0

Bx

I,

Y

0

Y

Z

where the matrices Y, Z are yet to be determined, but must satisfy

(3) Y, Z g M„       Z = ZT.

By applying elementary row operations we find that det(M) = det(V ), where

Ax        0 -BXY

B{        I, Y

YTB{    0     Z- YTY

so that

det( N ) = det
-BXY

Z - YTY

¿i

-YTB\

Theorem 4 now implies that Y, Z may be determined so that (3) is satisfied and N is

unimodular. But then M is symmetric and belongs to GL(3f, R). This completes the

proof.

As a supplement to this result, note that there are primitive elements [A, B] of

Mt2t with A symmetric which do not have a 2t X 2t completion. For example,

choose A = al, B = bl, where (a, b) = X and b2'

A      B

BT    X
M =

det(M) s det

so that M can never be unimodular

+1 mod a. then if

XeM„

0
bl

bl
X

= ±b it mod a,
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Proof of Theorem 6. Write a

of SL(« - 1, R). We have

1      0

[a, /?], where ß G Mx „_x. Let S be any element

ß ßS
.o s-1:

Thus, it is sufficient to prove the theorem for the row [a, ßS], since conjugates of

commutators are commutators. Choose S so thatySS = [b,0,... ,0]. Thus it is suffi-

cient to prove that if [a, b,0] is a primitive element of Mx3, then elements A, B of

SL(«, R) exist such that the first row of ABA~XB~X is [a, b,0]. This reduces the proof

to a direct construction.

Let x, y be elements of R such that ax + by

0
1

0

0

0

1

-y

o
a

0
0
1

x

0
6

1
0
0

0

1

0

1. We have

a      b

-y   x

o
a

-xy

.2

0

y      xy

This completes the proof, since

0    0
and

both belong to SL(3, R).

4. Some open questions. The results of this paper suggest a number of interesting

questions. We list a few.

(a) Let G be a subgroup of SL(«, R). Determine necessary and sufficient condi-

tions for a primitive element a of Mx n to be completable to an element of G.

(b) Determine all subgroups G of SL(«, R) such that every primitive element a of

Mx „ may be completed to an element of G.

(c) Determine all values of / such that 1 < t ■$ m and if A g Mt, B g M, „_„

A = AT, [A, B] primitive, then [A, B] may be completed to a symmetric matrix of

SL(n, R).

(d) Let R have the property that SL(«, R) is its own commutator subgroup (for

example, R a euclidean ring and n > 2). Determine whether or not an absolute

constant c exists such that every element of SL(n, R) is the product of at most c

commutators.
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