LATTICES ALL OF WHOSE CONGRUENCES ARE NEUTRAL¹

CHINTHAYAMMA MALLIAH AND PARAMESHWARA BHATTA, S.²

ABSTRACT. We derive a necessary condition for all congruences on a lattice to be neutral, and we show that a stronger condition of the same type characterizes relatively complemented lattices. We also find a condition necessary and sufficient for all congruences to be neutral.

1. Introduction. G. Gratzer [4] posed the following problem.

PROBLEM 1.1 (PROBLEM III.7 of [4]). Develop structure theorems for lattices all of whose congruences are standard, distributive or neutral.

This paper gives a solution to this problem for the case of neutral congruences. First we derive a necessary condition on lattices, for all of whose congruences to be neutral, which is stronger than that given by Iqbalunnisa [5]. Further, using a much stronger condition, a characterization of relatively complemented lattices is obtained. Finally, a complete solution to the last part of the problem is given by another approach.

For basic notations and results we refer the reader to G. Gratzer [4].

2. Case of neutral congruences.

THEOREM 2.1. A necessary condition for all congruence relations of a lattice L to be neutral is that L satisfies the following condition.

(C) For $a, b, c, d \in L$, a > b, c > d, $a/b \approx_w c/d$ implies the existence of $c_1 \in L$, $c \geq c_1 > d$, such that $c_1/d \approx_w a/b$.

PROOF. Let all congruence relations of L be neutral and $a/b \approx_w c/d$, a > b, c > d, $a, b, c, d \in L$. Then there exists a neutral ideal I of L such that $\Theta(a, b) = \Theta[I]$. Now $a \equiv b$ ($\Theta[I]$) and I is a standard ideal and hence by a theorem of [4] there exists $i \in I$ such that $a = b \vee i$.

But $i/b \wedge i \nearrow a/b \approx_w c/d$ implies $i/b \wedge i \approx_w c/d$. Clearly $i, b \wedge i \in I$ and I is a dually distributive ideal. Hence, by a corollary of [2] there exist $a_1, b_1 \in I$ and $c_1 \in L$, $c \geq c_1 > d$, such that $a_1/b_1 \nearrow c_1/d$. But as $a_1, b_1 \in I$ and $\Theta[I] = \Theta a/b$, $a_1 \equiv b_1 \ (\Theta a/b)$, which implies $c_1 \equiv d \ (\Theta a/b)$. Hence, there exists a finite sequence of elements $d = d_1 < d_2 < \cdots < d_n = c_1$ such that $d_{i+1}/d_i \approx_w a/b$ for $i = 0, 1, \ldots, n-1$. In particular, $d_2/d \approx_w a/b$, where $d < d_2 \leq c$, which proves the theorem.

Since (C) implies weak modularity for any lattice L, the result of [5] follows immediately. In fact, (C) is stronger than weak modularity, for, even the three element chain does not satisfy (C).

Received by the editors February 29, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 06B10.

¹Forms a part of the Doctoral Thesis of Parameshwara Bhatta, S. submitted to the Magnalore University on 20th July 1983.

²The research is supported by CSIR, New Delhi, India, under the Research Fellowship Scheme.
©1985 American Mathematical Society
0002-9939/85 \$1.00 + \$.25 per page

It is interesting to note that relatively complemented lattices always satisfy (C). In fact, a condition stronger than (C) characterizes these lattices as shown in the following.

THEOREM 2.2. A lattice L is relatively complemented iff $a, b, c, d \in L$, b < a, d < c, $a/b \approx_w c/d$ imply $a/b \approx c'/d$, where $d < c' \le c$.

PROOF. Let L be relatively complemented and let

$$a/b = e_0/f_0 \sim_w e_1/f_1 \sim_w \cdots \sim_w e_n/f_n = c/d.$$

The inductive assumption for n-1 weak perspectivities implies the existence of $e'_{n-1} \in L$ such that

$$a/b \stackrel{n-1}{\approx} e'_{n-1}/f_{n-1}, \qquad f_{n-1} < e'_{n-1} \le e_{n-1}.$$

Also, using the assumption for the dual of L, there exists $f'_{n-1} \in L$ such that $a/b {n \atop n-1} e_{n-1}/f'_{n-1}$, $f_{n-1} \leq f'_{n-1} < e_{n-1}$.

Case (1). Suppose $e_{n-1}/f_{n-1} \nearrow_w c/d$. Then

$$a/b \stackrel{n-1}{\approx} e'_{n-1}/f_{n-1} \nearrow c'/d$$
, where $d < c' = e'_{n-1} \lor d \le c$.

Hence $a/b \stackrel{n}{\approx} c'/d$, $d < c' \le c$.

Case (2). If $e_{n-1}/f_{n-1} \searrow_w c/d$, consider a relative complement c' of $c \wedge f'_{n-1}$ in [d, c].

Now $e_{n-1}/f'_{n-1} \setminus c/c \wedge f'_{n-1} \setminus c'/d$ and therefore $e_{n-1}/f'_{n-1} \setminus c'/d$, where $d < c' \le c$.

Hence $a/b \stackrel{n-1}{\approx} e_{n-1}/f'_{n-1} \setminus c'/d$. Consequently, $a/b \stackrel{n}{\approx} c'/d$, where $d < c' \le c$, which proves the necessity part by induction.

Conversely, if a > c > b, $a, b, c \in L$, then clearly $a/c \searrow_w a/b$. Hence, there exists $c' \in L$ such that $a/c \sim c'/b$. Clearly $a/c \searrow_w c'/b$ as c > b, which implies c' is a relative complement of c in [b, a] and hence the theorem follows.

However, condition (C) is not sufficient for all congruences of a lattice to be neutral as it is already known that a homomorphism kernel of a relatively complemented lattice need not be neutral (see [6]). The next theorem gives a solution to Problem 1.1 by another approach.

THEOREM 2.3. Let L be any lattice. Then the following conditions are equivalent.

- (1) All congruences of L are neutral.
- (2) L has a zero and satisfies the condition: $x \leq y \vee z$, $x, y, z \in L$, implies the existence of $a \in L$ such that $a \vee x = (a \wedge y) \vee (a \wedge z) \vee (x \wedge y)$, $a \equiv 0$ $(\Theta(x, x \wedge y))$.
- (3) L has a zero and satisfies the condition: $x \leq y \vee z$, $x, y, z \in L$, implies the existence of $a \in L$ such that $a \vee x = (a \wedge z) \vee (y \wedge (a \vee x))$, $a \equiv 0$ $(\Theta(x, x \wedge y))$.

PROOF. (1) implies (2). Clearly L must have a zero, for the least congruence $\omega = \Theta[\{0\}]$.

Let $x \leq y \vee z$. Then $\Theta(x, x \wedge y) = \Theta[I]$, where I is a neutral ideal. Since I is standard, by a theorem of [4], there exists $a_1 \in I$ such that $x = (x \wedge y) \vee a_1$.

Now $a_1 \leq y \vee z$, $a_1 \in I$, and I is a dually distributive ideal. Hence, by a corollary of [1], there exists an $a \in I$ such that $a_1 \leq a = (a \wedge y) \vee (a \wedge z)$. But then

$$a \lor (x \land y) = (a \lor a_1) \lor (x \land y) = a \lor (a_1 \lor (x \land y)) = a \lor x.$$

Thus

$$a \lor x = a \lor (x \land y) = (a \land y) \lor (a \land z) \lor (x \land y).$$

Also $a \in I$, and therefore, $a \equiv 0$ ($\Theta(x, x \wedge y)$), which proves (2).

(2) implies (3). From (2), given $x, y, z \in L$, $x \leq y \vee z$, there exists $a \in L$ such that $a \equiv 0$ ($\Theta(x, x \wedge y)$) and $a \vee x = (a \wedge y) \vee (a \wedge z) \vee (x \wedge y)$.

Now

$$a \lor x \ge (a \land z) \lor (y \land (a \lor x)) \ge (a \land y) \lor (a \land z) \lor (x \land y) = a \lor x.$$

Hence (3) follows.

(3) implies (1). Let $x, y \in L$, $x \ge y$. Then $x = y \lor x$. So by (3) with z = x there exists an $a \in L$ such that $a \lor x = (a \land x) \lor (y \land (a \lor x))$, $a \equiv 0$ ($\Theta(x, x \land y)$). But this implies $x = a \lor y$ with $a \equiv 0$ ($\Theta(x/y)$). Hence, by a remark of [3], all congruence relations of L are standard.

Now it suffices to show that all standard ideals of L are neutral. Let I be a standard ideal of L and $x \leq y \vee z$, $x \in I$, $y, z \in L$. Then by (3), there exits $b \in L$ such that $b \vee x = (b \wedge z) \vee (y \wedge (b \vee x))$, $b \equiv 0$ ($\Theta(x, x \wedge y)$). Since $x, x \wedge y, 0 \in I$ and I is a homomorphism kernel, we get $b \in I$. Hence $b \vee x \in I$.

Further

$$((b \lor x) \land y) \lor ((b \lor x) \land z) \ge (b \land z) \lor (y \land (b \lor x)) = b \lor x.$$

Hence

$$b\vee x=((b\vee x)\wedge y)\vee ((b\vee x)\wedge z).$$

Puting $a = b \lor x$, we get $x \le a = (a \land y) \lor (a \land z)$ with $a \in I$. Thus, by a corollary of [2], I is a dually distributive ideal, which completes the proof.

REFERENCES

- 1. Chinthayamma Malliah and Parameshwara Bhatta, S., Generalizations of dually distributive and neutral ideals to convex sublattices. I, Notre Dame J. Formal Logic (submitted).
- Generalizations of dually distributive and neutral ideals to convex sublattices. II, Notre Dame
 J. Formal Logic (submitted).
- 3. ____, Lattices all of whose congruences are standard or distributive, Fund. Math. (submitted).
- 4. G. Gratzer, General lattice theory, Birkhauser Verlag, Basel and Stuttgart, 1978.
- Iqbalunnisa, Normal, simple and neutral congruences on lattices, Illinois J. Math. 10 (1966), 227– 234
- M. F. Janowitz, A characterization of standard ideals, Acta Math. Acad. Sci. Hungar. 16 (1965), 289–301.

DEPARTMENT OF MATHEMATICS, MAGNALORE UNIVERSITY, MANGALAGANGOTRI, D.K., KARNATAKA, INDIA