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LATTICES ALL OF WHOSE CONGRUENCES ARE NEUTRAL1

CHINTHAYAMMA MALLIAH AND PARAMESHWARA BHATTA, S.2

ABSTRACT. We derive a necessary condition for all congruences on a lattice

to be neutral, and we show that a stronger condition of the same type char-

acterizes relatively complemented lattices. We also find a condition necessary

and sufficient for all congruences to be neutral.

1. Introduction. G. Gratzer [4] posed the following problem.

PROBLEM 1.1 (PROBLEM III.7 of [4]). Develop structure theorems for lattices

all of whose congruences are standard, distributive or neutral.

This paper gives a solution to this problem for the case of neutral congruences.

First we derive a necessary condition on lattices, for all of whose congruences to

be neutral, which is stronger than that given by Iqbalunnisa [5], Further, using a

much stronger condition, a characterization of relatively complemented lattices is

obtained. Finally, a complete solution to the last part of the problem is given by

another approach.

For basic notations and results we refer the reader to G. Gratzer [4].

2. Case of neutral congruences.

THEOREM 2.1. A necessary condition for all congruence relations of a lattice

L to be neutral is that L satisfies the following condition.

(C) For a,b,c,d G L, a > b, c > d, a/b taw c/d implies the existence of Cx G L,

c> ex > d, such that cx/d ?aw a/b.

PROOF. Let all congruence relations of L be neutral and a/b &w c/d, a > b,

c> d,a,b,c,dE L. Then there exists a neutral ideal / of L such that Q(a, b) = ©[/].

Now a = b (@{I]) and / is a standard ideal and hence by a theorem of [4] there

exists i G / such that a — 6 V i.

But i/b hi / a/b «„, c/d implies i/b A i «w c/d. Clearly i, b hi G / and /
is a dually distributive ideal. Hence, by a corollary of [2] there exist ai,£>i G /

and cx E L, c > cx > d, such that ax/bx / cx/d. But as ax,bx G / and 8[/] =

Qa/b, ax = bx (Qa/b), which implies cx = d (Qa/b). Hence, there exists a finite

sequence of elements d = di < d2 < • • • < dn = ci such that di+x/di faw a/b for

i = 0,1,..., n — 1. In particular, d2/d mw a/b, where d < d2 < c, which proves the

theorem.

Since (C) implies weak modularity for any lattice L, the result of [5] follows

immediately. In fact, (C) is stronger than weak modularity, for, even the three

element chain does not satisfy (C).
-
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It is interesting to note that relatively complemented lattices always satisfy (C).

In fact, a condition stronger than (C) characterizes these lattices as shown in the

following.

THEOREM 2.2.   A lattice L is relatively complemented iff a,b,c,d E L, b < a,
n n

d < c, a/b &w c/d imply a/b « c'/d, where d < c' < c.

PROOF. Let L be relatively complemented and let

a/b = e0//o ~w ex/fi ~w • • • -m» en/fn — c/d.

The inductive assumption for n — 1 weak perspectivities implies the existence of

e^_i G L such that

n-l    t

a/b   sa en_x/fn-i,        /n-i < cn-i < en-v

Also, using the assumption for the dual of L, there exists /„_, £ L sucri that

a/bn~x Cn-l/fn-l, /n-l < fn-1 < en-l-

Case (1). Suppose en-x/fn-i /w c/d. Then

n-l

a/b   ss en_x/fn-i / c /d,    where d < c — e'n_x V d < c.

n

Hence a/b sa c' ¡d, d < c' < c.

Case (2). If en-x/fn-i \w c/d, consider a relative complement c' of c A fn_x

in [d,c\.

Now en-x/f'n-x \ c/c A /n-i \ c' I d an<1 therefore e„_i//n_, \ c'/d, where

d < c' <c.
n — l n

Hence a/b « e„_i/'/4-i \ c'/^- Consequently, a/6 r¿ c'/á, where d < c' < c,

which proves the necessity part by induction.

Conversely, if a > c > b, a, b, c G L, then clearly a/c \w a/b. Hence, there exists

c' E L such that a/c ~ c'/b. Clearly a/c \ d ¡b as c > b, which implies c' is a

relative complement of c in [6, o] and hence the theorem follows.

However, condition (C) is not sufficient for all congruences of a lattice to be

neutral as it is already known that a homomorphism kernel of a relatively comple-

mented lattice need not be neutral (see [6]). The next theorem gives a solution to

Problem 1.1 by another approach.

THEOREM 2.3. Let L be any lattice. Then the following conditions are equiv-

alent.

(1) All congruences of L are neutral.

(2) L has a zero and satisfies the condition: x < yV z, x,y,z E L, implies the

existence of a G L such that oVi= (a A y) V (a A z) V (x A y), a = 0 (Q(x, x A y)).

(3) L has a zero and satisfies the condition: x < y V z, x, y, z E L, implies the

existence of aE L such that a V x = (a A z) V (y A (a V x)), a = 0 {Q(x,x A y)).

PROOF. (1) implies (2). Clearly L must have a zero, for the least congruence

u; = 9[{0}].

Let x < yV z. Then Q(x,x hy) = Q[I], where / is a neutral ideal. Since J is

standard, by a theorem of [4], there exists ax E I such that x — (x A y) V ai.
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Now ax <yVz, ax El, and J is a dually distributive ideal. Hence, by a corollary

of [1], there exists an a G / such that ax < a = (a A y) V {a hz). But then

a V (x A y) = (a V ax) V {x A y) = a V {ax V (x A y)) = a V x.

Thus
a V x = a V (x A y) = (a A y) V (a A z) V (x A y).

Also a E I, and therefore, a = 0 (6(x, a: A y)), which proves (2).

(2) implies (3). From (2), given x,y,z E L, x < y V z, there exists a E L such

that a = 0 (0(x, x A y)) and a V x = (a A y) V (a A 2) V (x A y).

Now

a V x > (a A z) V (y A (a V x)) > (a A y) V (a A 0) V (x A y) = a V x.

Hence (3) follows.

(3) implies (1). Let x,y E L, x >y. Then x — y V x. So by (3) with 0 = x there

exists an a E L such that o V x = (o A x) V (y A (o V x)), a = 0 (©(x, x A y)). But

this implies x = a\/y with a = 0 (Qx/y). Hence, by a remark of [3], all congruence

relations of L are standard.

Now it suffices to show that all standard ideals of L are neutral. Let J be a

standard ideal of L and x < yV z, x E I, y,z E L. Then by (3), there exits b E L

such that b V x = (b A z) V (y A (b V x)), 6 = 0 (6(x, x A y)). Since x, x A y, 0 G /

and J is a homomorphism kernel, we get b E I. Hence b V x G /.

Further

((6 V x) A y) V ((6 V x) A z) > (6 A «) V (y A (6 V x)) = b V x.

Hence

b V x = ((6 V x) A y) V {(b V x) A 2).

Puting o = 6 V x, we get x < o = (a A y) V (a A z) with a E I. Thus, by a corollary

of [2], / is a dually distributive ideal, which completes the proof.
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