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BOUNDEDNESS OF THE MAXIMAL OPERATOR
ON WEIGHTED BMO

STEVEN BLOOM

ABSTRACT. The Hardy-Littlewood maximal operator M* is a bounded op-

erator mapping BMOK into BLO™ if and only if the weight w is a Reverse

Holder weight in weak a2 ■

T will denote the unit circle in the complex plane. For an interval / C T, /(/) =

(1/\I\) fj f{x)dx. A weight w E RH if w satisfies the Reverse Holder Inequality:

There exists a p > 1 and a constant C such that I{wp)1'p < CI{w) for all intervals

I. / is a function of weighted bounded mean oscillation, / G BMOw, provided

'(1/ - HDD < CT{w)    for all intervals J,

while / is a function of weighted bounded lower oscillation, / G BLO™, if

/(/) - ess^inf / < CI(w)    for all L

A weight w belongs to the Kerman-Torchinsky class ap if for any interval / and

measurable set E C I [5],

(\E\y        w{E)

(1) \W -CW)-
ap c RH. Indeed, Ap c ap c n9>p Aj, where Ap is the Muckenhoupt class of

weights. In [2], we introduced the class weakop, defined by (1) with the additional

proviso that E be an interval. This class properly contains ap. For if w is a doubling

measure with constant 2P, that is

w{J) < 2pw{I)    for all intervals I CJ

with \J\ — 2\I\, then a standard argument shows w E weakap. But there exist

doubling measures that are not in RH [4], It is not yet known whether ap and

RH n weak ap are the same.

Let M* denote the Hardy-Littlewood maximal operator

M7(x) = sup I(|/|).
iBx

We will show the following result.

THEOREM. M* : BMOw —► BLO™ ¿3 a bounded operator if and only if w E
RH n weaka2-

The necessity of the condition RH n weaka2 was proven in [2], but a stronger

condition was used for the converse. We prove the sufficiency here:
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Fix an interval /, and assume, with no loss of generality, that / > 0, / G BMO«,.

For x G J, define

Fx(x)=sup{J(f):xEJ, J C 41},    F2(x) = sup{J(/): x E J, J £ 41},

where 41 is the interval concentric with I but of four times the length.   So on

/, M*f(x) = max{Fx(x),F2(x)}. Put

Ex = {xE I: Fx(x) > F2{x)},    E2 = {x E I: F2(x) > i\(x)}

and ß = essinf/ M*f.
It will suffice to show

(2) 4, / (Fi-ß)< CI(w)    for i = 1 and 2.
\*\ JEi

For i = 1, following the proof in [2], we obtain disjoint intervals /„ C 41, intervals

Jn 3 In of twice their length, and a "bad" function

& = £(/-./«(/))x/„.
n

The proof of (2) requires showing b E Lr for some r > 1 with

(3) \\b\\r<c(f wr)   r.
\JiI   J

As w G RH, there exists an r > 1 and p > 1 such that wr E Ap, w~rqlp E Aq,

where 1/p + 1/q = 1, and J(wr) < CJ(w)r for all intervals J [3]. Now

¡i; = £/ \f-jn{f)\rw-r'pwr
n   •'■in

<-W,u-JM)rw-,r") '"(/,-')

/p

Let fl(x) = sup{J|/ - J(f)\ : xE J C Jn} and wn(x) = sup{J(u;) : x E J C Jn}\
that is, the sharp and maximal functions restricted to Jn. By the weighted version

of the Sharp Function Theorem [1],

l/q /   r \ V«
et\irnl,-qr/p(/71/ - Mf)rw-^A 9<c^(/n)^

But with / G BMOw, fl(x) < Cwn(x) < C[(u;r)„(x)]1/r, using Holder's Inequality.

This, Muckenhoupt's Theorem, and the fact that wr is a doubling measure give

. ■«./. t \ Vi / r       \ Vp

IIC <"<?£(/   [K)n]^-Wp /    W)
n       \JJn J \JJn /

<C£/   wr<C^2       wT <C I   wr

which is (3).
For i = 2, we actually show

(4) F2(x) - /? < CI(w)    for all ie£2
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which gives (2). We analyze the case where x E E2PiJ, J <£_ 41, I = [a, a + h] and

J = [b,c] with b E I. Set J = [b - h,c], J0 = [b - h,b] and Jk = [b,b + 2k~lh\ as
long as 2k~1h < c — b. Let n be the smallest integer with 2n~1h > c — b, and call

J = Jn. Since I C J, J{f) < ß. Hence,

J(f)-ß±J(f)-J(f)=^-^fjf-^Jjof

= A[J(/)_jo(/)]

<22-n[Jx(f)-J0{f) + Jn{f)-Jl{f)}.

Now let R = Jo U Jx ■ Then

\Ji{f) -Mf)\ < \Ji{f) -R{f)\ + \Mf) -R(f)\ <T^fR\f-R(f)\

<CR{w)    since / G BMO«,.

Also,

\Jn{f)-Jl(f)\

n-l

¿Tjk+i(f)-Jk(f)

n—1 n—1

< 2 £ Jk+1{\f - Jk+x{f)\) < CJ2 Jk+i{w).
k=l k=l

By the weak ot2 condition,

Jk+iH < cfe^JiH < C2kJx(w).
\Ji\

Hence,
n-l

\Mf) - Mf)\ < CJx(w) £ 2k < C2n+1R(w).
fc=i

Thus
J(f) -ß< 22-n[CxR(w) + C22n+lR(w)\ < CR(w).

But w is a doubling measure [3], so R(w) < CI(w) and (4) follows.
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